A novel alpha-L-arabinofuranosidase (alpha-AraF) belonging to glycoside hydrolase (GH) family 43 was cloned from Humicola insolens and expressed in Aspergillus oryzae. (1)H-NMR analysis revealed that the novel GH43 enzyme selectively hydrolysed (1-->3)-alpha-L-arabinofuranosyl residues of doubly substituted xylopyranosyl residues in arabinoxylan and in arabinoxylan-derived oligosaccharides. The optimal activity of the cloned enzyme was at pH 6.7 and 53 degrees C. Two other novel alpha-L-arabinofuranosidases (alpha-AraFs), both belonging to GH family 51, were cloned from H. insolens and from the white-rot basidiomycete Meripilus giganteus. Both GH51 enzymes catalysed removal of (1-->2) and (1-->3)-alpha-L-arabinofuranosyl residues from singly substituted xylopyranosyls in arabinoxylan; the highest arabinose yields were obtained with the M. giganteus enzyme. Combinations (50:50) of the GH43 alpha-AraF from H. insolens and the GH51 alpha-AraFs from either M. giganteus or H. insolens resulted in a synergistic increase in arabinose release from water-soluble wheat arabinoxylan in extended reactions at pH 6 and 40 degrees C. This synergistic interaction between GH43 and GH51 alpha-AraFs was also evident when a GH43 alpha-AraF from a Bifidobacterium sp. was supplemented in combination with either of the GH51 enzymes. The synergistic effect is presumed to be a result of the GH51 alpha-AraFs being able to catalyse the removal of single-sitting (1-->2)-alpha-L- arabinofuranosyls that resulted after the GH43 enzyme had catalysed the removal of (1-->3)-alpha-L-arabinofuranosyl residues on doubly substituted xylopyranosyls in the wheat arabinoxylan.
A Microdochium nivale carbohydrate:acceptor oxidoreductase was purified, cloned, heterologously expressed, and characterized. The gene encoding the protein showed one intron, and the ORF showed a sequence with low homology (# 25% identity or 65% similarity) to other known flavin-containing carbohydrate oxidases. The maturation of the protein required the cleavage of a tetrameric propeptide in addition to an 18 amino-acid signal peptide. The enzyme was found to have a relative molecular mass of 55 000 Da, an isoelectric point of 9, and one FAD per protein. It could oxidize mono-, oligo-, or polymeric saccharides, and transfer their electrons to O 2 or other acceptors. When d-glucose served as electrondonating substrate, an activity of 2 s 21 was observed at pH 5.5 and 23 8C. Among various oligosaccharides, the enzyme preferred tetrameric dextrins, indicating a favorable interaction of four linked glucose units with the substrate pocket. The unique structure and ability of oxidizing oligo/ polymeric saccharides suggest a promising prospect of this enzyme for various industrial/medicinal applications. Keywords:oxidoreductase; flavin; carbohydrate; Microdochium.Carbohydrate oxidases are a family of flavin-or Cu-containing enzymes that catalyze the oxidation of the primary or secondary alcohol in various saccharides with the concomitant reduction of O 2 to H 2 O 2 . These enzymes are widely distributed and play important roles in various metabolism steps. Extensive physical and chemical characterizations, including X-ray crystallography and sitedirected mutagenesis, have been carried out to elucidate the fundamental aspects of the structure-function relationship of these enzymes [1±3].Recently, carbohydrate oxidases are receiving increased attention as potential diagnostic reagents or industrial biocatalysts [3±8]. Attractive applications include (a) biotransformation of glycopolymers (glycolipids, glycoproteins, polysaccharides) into desirable materials such as sweeteners, flavourants, or paper strength additives; (b) in situ generation of oxidant H 2 O 2 for uses in food manufacturing, dyeing or bleaching of lignocellulolytic/ keratin materials, detergent, or waste-water treatment; (c) utilization of economic and stable carbohydrates, rather than expensive and unstable NAD(P)H, as electron-donor for various biocatalyses; (d) construction of biosensors for blood sugar, O 2 , or other substances; and (e) biosynthesis of functional/chiral pharmaceutical molecules. The high substrate specificity, mild operation conditions, and environmental-friendliness of bio-oxidative systems hold advantages over conventional chemical systems that are often hard to control, nonspecific, costly, or hazardous.We report here the identification, cloning, expression, and characterization of a novel carbohydrate:acceptor oxidoreductase from Microdochium nivale (MnCO). We found that this flavin-containing enzyme differs significantly from other functional analogs [such as glucose oxidase (GO; EC 1.1.3.4)] as demonstrated by its low sequence...
This study describes the identification of the key enzyme activities required in a "minimal" enzyme cocktail able to catalyze hydrolysis of water-soluble and water-insoluble wheat arabinoxylan and whole vinasse, a fermentation effluent resulting from industrial ethanol manufacture from wheat. The optimal arabinose-releasing and xylan-depolymerizing enzyme activities were identified from data obtained when selected, recombinant enzymes were systematically supplemented to the different arabinoxylan substrates in mixtures; this examination revealed three novel alpha-l-arabinofuranosidase activities: (i) one GH51 enzyme from Meripilus giganteus and (ii) one GH51 enzyme from Humicola insolens, both able to catalyze arabinose release from singly substituted xylose; and (iii) one GH43 enzyme from H. insolens able to catalyze the release of arabinose from doubly substituted xylose. Treatment of water-soluble and water-insoluble wheat arabinoxylan with an enzyme cocktail containing a 20%:20%:20%:40% mixture and a 25%:25%:25%:25% mixture, respectively, of the GH43 alpha-l-arabinofuranosidase from H. insolens (Abf II), the GH51 alpha-l-arabinofuranosidase from M. giganteus (Abf III), a GH10 endo-1,4-beta-xylanase from H. insolens (Xyl III), and a GH3 beta-xylosidase from Trichoderma reesei (beta-xyl) released 322 mg of arabinose and 512 mg of xylose per gram of water-soluble wheat arabinoxylan dry matter and 150 mg of arabinose and 266 mg of xylose per gram of water-insoluble wheat arabinoxylan dry matter after 24 h at pH 5, 50 degrees C. A 10%:40%:50% mixture of Abf II, Abf III, and beta-xyl released 56 mg of arabinose and 91 mg of xylose per gram of vinasse dry matter after 24 h at pH 5, 50 degrees C. The optimal dosages of the "minimal" enzyme cocktails were determined to be 0.4, 0.3, and 0.2 g enzyme protein per kilogram of substrate dry matter for the water-soluble wheat arabinoxylan, the water-insoluble wheat arabinoxylan, and the vinasse, respectively. These enzyme protein dosage levels were approximately 14, approximately 18, and approximately 27 times lower than the dosages used previously, when the same wheat arabinoxylan substrates were hydrolyzed with a combination of Ultraflo L and Celluclast 1.5 L, two commercially available enzyme preparations produced by H. insolens and T. reesei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.