We demonstrate the production of high-quality polymer opal fibers in an industrially-scalable process. These fibers exhibit structural color, based on the self-assembly of sub-micron core-shell particles, with a spectrum which is stretch-tunable across the visible region. The internal substructure and ordering of fibers, as inferred from variations in spectral bandwidth, is studied using dark-field microscopy. We employ a granular model to examine flow and shear forces during the extrusion process, and the effects on particle ordering. In both theory and experiment, a concentric zone of the fiber near the exposed surface develops particularly strong structural color. Such elastically-tuned structurally colored fibers are of interest for many applications.
A generalized nonlinear Maxwell model which had previously been analyzed for plane Couette geometry is here applied to a lid-driven cavity flow. The full three-dimensional hydrodynamical problem is treated numerically. Depending on the relevant model parameters, both smooth laminar and low Reynolds number turbulent flows are found, strikingly similar to the experimentally observed elastic turbulence phenomena in polymer solutions. Representative results of the calculated flow patterns, as well as measures for the turbulent nature of the flow are presented graphically.
A generalized model for the behavior of the stress tensor in non-Newtonian fluids is investigated for spatially homogeneous plane Couette flow, showing a variety of nonlinear responses and deterministic chaos. Mapping of chaotic solutions is achieved through the largest Lyapunov exponent for the two main parameters: The shear rate and the temperature and/or density. Bifurcation diagrams and stability analysis are used to reveal some of the rich dynamics that can be found. Suggested mechanisms for stability loss in these complex fluids include Hopf, saddle-node, and period-doubling bifurcations.
The generalized Maxwell model is formulated as a nonlinear relaxation equation for the symmetric traceless stress tensor. The relaxation term of the equation involves the derivative of a potential function with respect to the stress tensor. Two special cases for this potential referred to as "isotropic" and "anisotropic" are considered. In the first case, the potential solely depends on the second scalar invariant, viz. the norm of the tensor. In the second case, also a dependence on the third scalar invariant, essentially the determinant, is taken into account in analogy to the Landau-de Gennes potential of nematic liquid crystals. Rheological consequences of the model are presented for a plane Couette flow with an imposed shear rate. The non-Newtonian viscosity and the normal stress differences are analyzed for stationary solutions. The dependence on the model parameters is discussed in detail. In particular, the occurrence of a shear-thickening behaviour is studied. The possibility to describe substances with yield stress and the existence of non-stationary, stick-slip-like solutions are pointed out. The extension of the model to magneto-rheological fluids is indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.