Proton MR spectroscopic imaging from PTR may assist in the differentiation of glioblastomas, metastases, and PCLs.
Next-generation sequencing (NGS) technologies have ushered in the era of precision medicine, transforming the way we treat cancer patients and diagnose disease. Concomitantly, the advent of these technologies has created a surge of microbiome and metagenomic studies over the last decade, many of which are focused on investigating the host-gene-microbial interactions responsible for the development and spread of infectious diseases, as well as delineating their key role in maintaining health. As we continue to discover more information about the etiology of infectious diseases, the translational potential of metagenomic NGS methods for treatment and rapid diagnosis is becoming abundantly clear. Here, we present a robust protocol for the implementation and application of "precision metagenomics" across various sequencing platforms for clinical samples. Such a pipeline integrates DNA/RNA extraction, library preparation, sequencing, and bioinformatics analyses for taxonomic classification, antimicrobial resistance (AMR) marker screening, and functional analysis (biochemical and metabolic pathway abundance). Moreover, the pipeline has 3 tracks: STAT for results within 24 h; Comprehensive that affords a more in-depth analysis and takes between 5 and 7 d, but offers antimicrobial resistance information; and Targeted, which also requires 5-7 d, but with more sensitive analysis for specific pathogens. Finally, we discuss the challenges that need to be addressed before full integration in the clinical setting.
Systemic sclerosis (SSc) is a fibrotic and autoimmune disease characterized clinically by skin and internal organ fibrosis and vascular damage, and serologically by the presence of circulating autoantibodies. Although etiopathogenesis is not yet well understood, the results of numerous genetic association studies support genetic contributions as an important factor to SSc. In this paper, the major genes of SSc are reviewed. The most recent genome-wide association studies (GWAS) are taken into account along with robust candidate gene studies. The literature search was performed on genetic association studies of SSc in PubMed between January 2000 and March 2014 while eligible studies generally had over 600 total participants with replication. A few genetic association studies with related functional changes in SSc patients were also included. A total of forty seven genes or specific genetic regions were reported to be associated with SSc, although some are controversial. These genes include HLA genes, STAT4, CD247, TBX21, PTPN22, TNFSF4, IL23R, IL2RA, IL-21, SCHIP1/IL12A, CD226, BANK1, C8orf13-BLK, PLD4, TLR-2, NLRP1, ATG5, IRF5, IRF8, TNFAIP3, IRAK1, NFKB1, TNIP1, FAS, MIF, HGF, OPN, IL-6, CXCL8, CCR6, CTGF, ITGAM, CAV1, MECP2, SOX5, JAZF1, DNASEIL3, XRCC1, XRCC4, PXK, CSK, GRB10, NOTCH4, RHOB, KIAA0319, PSD3 and PSOR1C1. These genes encode proteins mainly involved in immune regulation and inflammation, and some of them function in transcription, kinase activity, DNA cleavage and repair. The discovery of various SSc-associated genes is important in understanding the genetics of SSc and potential pathogenesis that contribute to the development of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.