Despite no alteration in baseline IL-6 and significantly smaller reductions in measures of adipose tissue as compared with the aerobic training group, only resistance exercise training resulted in significant attenuation of CRP concentration.
The effect of duration-matched concurrent exercise training (CET) (50% resistance (RET) and 50% endurance (EET) training) on physiological training outcomes in untrained middle-aged men remains to be elucidated. Forty-seven men (age, 48.1 ± 6.8 years; body mass index, 30.4 ± 4.1 kg·m(-2)) were randomized into 12-weeks of EET (40-60 min of cycling), RET (10 exercises; 3-4 sets × 8-10 repetitions), CET (50% serial completion of RET and EET), or control condition. The following were determined: intervention-based changes in fitness and strength; abdominal visceral adipose tissue (VAT), total body fat (TB-FM) and fat-free (TB-FFM) mass; plasma cytokines (C-reactive protein (CRP), tumor necrosis factor-α (TNFα) interleukin-6 (IL-6)); muscle protein content of p110α and glucose transporter 4 (GLUT4); mRNA expression of GLUT4, peroxisome proliferator-activated receptor-γ coactivator-1α-β, cytochrome c oxidase, hexokinase II, citrate synthase; oral glucose tolerance; and estimated insulin sensitivity. CET promoted commensurate improvements of aerobic capacity and muscular strength and reduced VAT and TB-FM equivalently to EET and RET (p < 0.05), yet only RET increased TB-FFM (p < 0.05). Although TNFα and IL-6 were reduced after all training interventions (p < 0.05), CRP remained unchanged (p > 0.05). EET reduced area under the curve for glucose, insulin, and C-peptide, whilst CET and RET respectively reduced insulin and C-peptide, and C-peptide only (p < 0.05). Notwithstanding increased insulin sensitivity index after all training interventions (p < 0.05), no change presented for GLUT4 or p110α total protein, or chronic mRNA expression of the studied mitochondrial genes (p > 0.05). In middle-aged men, 12 weeks of duration-matched CET promoted commensurate changes in fitness and strength, abdominal VAT, plasma cytokines and insulin sensitivity, and an equidistant glucose tolerance response to EET and RET; despite no change of measured muscle mechanisms associative to insulin action, glucose transport, and mitochondrial function.
Aerobic exercise training is associated with an increase in satiety, while an equivalent period of resistance training is not.
We determined myofibrillar and mitochondrial protein fractional synthesis rates (FSR), intramuscular signaling protein phosphorylation, and mRNA expression responses after isolated bouts of resistance exercise (RE), aerobic exercise (AE), or in combination [termed concurrent exercise (CE)] in sedentary middle-aged men. Eight subjects (age = 53.3 ± 1.8 yr; body mass index = 29.4 ± 1.4 kg·m(2)) randomly completed 8 × 8 leg extension repetitions at 70% of one repetition-maximum, 40 min of cycling at 55% peak aerobic power output (AE), or (consecutively) 50% of the RE and AE trials (CE). Biopsies were obtained (during a primed, constant infusion of l-[ring-(13)C(6)]phenylalanine) while fasted, and at 1 and 4 h following postexercise ingestion of 20 g of protein. All trials increased mitochondrial FSR above fasted rates (RE = 1.3-fold; AE = 1.5; CE = 1.4; P < 0.05), although only CE (2.2) and RE (1.8) increased myofibrillar FSR (P < 0.05). At 1 h postexercise, phosphorylation of Akt on Ser(473) (CE = 7.7; RE = 4.6) and Thr(308) (CE = 4.4; RE = 2.9), and PRAS40 on Thr(246) (CE = 3.8; AE = 2.5) increased (P < 0.05), with CE greater than AE for Akt Ser(473)-Thr(308) and greater than RE for PRAS40 (P < 0.05). Despite increased phosphorylation of Akt-PRAS40, phosphorylation of mammalian target of rapamycin (Ser(2448)) remained unchanged (P > 0.05), while rpS6 (Ser(235/236)) increased only in RE (10.4) (P < 0.05). CE and AE both resulted in increased peroxisome proliferator receptor-γ coactivator 1-α (PGC1α) expression at 1 h (CE = 2.9; AE = 2.8; P < 0.05) and 4 h (CE = 2.6; AE = 2.4) and PGC1β expression at 4 h (CE = 2.1; AE = 2.6; P < 0.05). These data suggest that CE-induced acute stimulation of myofibrillar and mitochondrial FSR, protein signaling, and mRNA expression are equivalent to either isolate mode (RE or AE). These results occurred without an interference effect on muscle protein subfractional synthesis rates, protein signaling, or mRNA expression.
This study sought to compare the respective effects of resistance or aerobic exercise of higher or lower intensities on the acute plasma interleukin-6 (IL-6) and C-reactive protein (CRP) response in a sedentary, middle-aged, disease-free cohort. Following baseline testing, and in a randomized cross-over design, 12 sedentary males completed four exercise protocols, including 40 min of moderate-vigorous (M-VA) or low-intensity (LA) aerobic exercise on a cycle ergometer; and a moderate-vigorous (M-VR) or low-intensity (LR) full-body resistance session matched for protocol duration. Venous blood was obtained pre-, post-, 3 h post and 24 h post-exercise and analysed for IL-6, CRP, leukocyte count, myoglobin, creatine kinase (CK), and cortisol. Diet and physical activity were standardized 24 h before and after exercise. Results indicated an elevated CRP response in the M-VR protocol in comparison to the low-intensity protocols (P < 0.05); however, no changes were evident between the moderate-vigorous intensity protocols. The moderate-vigorous intensity protocols induced significant increases of IL-6, cortisol, and leukocytes in comparison to the low-intensity protocols (P < 0.05). However, the IL-6 response showed no significant differences between the moderate-vigorous intensity protocols, despite the M-VR protocol inducing the largest response of markers indicative of muscle damage (CK, myoglobin, and neutrophil count) (P < 0.05). Hence, indicating a disassociation between the IL-6 response and markers of muscle damage within the respective exercise bouts. The highest IL-6 response was evident in the moderate-vigorous intensity protocols immediately post-exercise. Moreover, the exercise modality did not seem to influence the acute IL-6 and CRP response, with the main determinant of the IL-6 response being exercise intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.