Recent RNA-seq technology revealed thousands of splicing events that are under rapid evolution in primates, whereas the reliability of these events, as well as their combination on the isoform level, have not been adequately addressed due to its limited sequencing length. Here, we performed comparative transcriptome analyses in human and rhesus macaque cerebellum using single molecule long-read sequencing (Iso-seq) and matched RNA-seq. Besides 359 million RNA-seq reads, 4,165,527 Iso-seq reads were generated with a mean length of 14,875 bp, covering 11,466 human genes, and 10,159 macaque genes. With Iso-seq data, we substantially expanded the repertoire of alternative RNA processing events in primates, and found that intron retention and alternative polyadenylation are surprisingly more prevalent in primates than previously estimated. We then investigated the combinatorial mode of these alternative events at the whole-transcript level, and found that the combination of these events is largely independent along the transcript, leading to thousands of novel isoforms missed by current annotations. Notably, these novel isoforms are selectively constrained in general, and 1,119 isoforms have even higher expression than the previously annotated major isoforms in human, indicating that the complexity of the human transcriptome is still significantly underestimated. Comparative transcriptome analysis further revealed 502 genes encoding selectively constrained, lineage-specific isoforms in human but not in rhesus macaque, linking them to some lineage-specific functions. Overall, we propose that the independent combination of alternative RNA processing events has contributed to complex isoform evolution in primates, which provides a new foundation for the study of phenotypic difference among primates.
With genome sequence and composition highly analogous to human, rhesus macaque represents a unique reference for evolutionary studies of human biology. Here, we developed a comprehensive genomic framework of rhesus macaque, the RhesusBase2, for evolutionary interrogation of human genes and the associated regulations. A total of 1,667 next-generation sequencing (NGS) data sets were processed, integrated, and evaluated, generating 51.2 million new functional annotation records. With extensive NGS annotations, RhesusBase2 refined the fine-scale structures in 30% of the macaque Ensembl transcripts, reporting an accurate, up-to-date set of macaque gene models. On the basis of these annotations and accurate macaque gene models, we further developed an NGS-oriented Molecular Evolution Gateway to access and visualize macaque annotations in reference to human orthologous genes and associated regulations (www.rhesusbase.org/molEvo). We highlighted the application of this well-annotated genomic framework in generating hypothetical link of human-biased regulations to human-specific traits, by using mechanistic characterization of the DIEXF gene as an example that provides novel clues to the understanding of digestive system reduction in human evolution. On a global scale, we also identified a catalog of 9,295 human-biased regulatory events, which may represent novel elements that have a substantial impact on shaping human transcriptome and possibly underpin recent human phenotypic evolution. Taken together, we provide an NGS data-driven, information-rich framework that will broadly benefit genomics research in general and serves as an important resource for in-depth evolutionary studies of human biology.
Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing—a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.
The investigation of topological properties of proteins in protein-protein interaction network (PPIN) has great potentials to identify basic protein functions and mechanisms of action. Based on human PPIN, previous study has shown that the topological properties of drug targets are significantly distinguished from those of proteins that are not targeted by drugs (non-drug-targets). MicroRNAs (miRNAs) are known to regulate gene expression at the post-transcriptional level. To determine whether the differences in topological properties between drug targets and non-drug-targets are dominated by the proteins that are regulated by miRNA, we divided the drug targets into two sets: those are regulated by miRNA (mir-drug-targets) and those are not regulated by miRNA (non-mir-drug-targets). We compared the probability of interactions and five topological properties among the three types of proteins in human PPIN. Our results demonstrated that mir-drug-targets preferentially interact with other mir-drug-targets and tend to be hub-bottlenecks. However, there was no bias on topological properties between non-mir-drug-targets and non-drug-targets. The same topological features are observed among non-drug targets. These findings indicate that miRNA regulation has an important role in human PPIN, and may be useful in the development of novel drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.