This paper aims to provide a stable instrumental method for provenance discrimination of Anji-White tea by its distinctive taste. 180 authentic and 60 counterfeit white tea samples were collected for specific geographical origins detection; all of them were measured by electronic tongue coupled with 7 independent sensors. Therefore, chemometrics methods, principal component analysis (PCA), and partial least squares discriminant analysis (PLSDA) were performed in classification. The PCA distribution shows that, in provenance analysis, PCA is a simple and reliable tool for small sample sets, but for sets with large objects, PCA seems powerless in classification. Therefore, PLSDA was applied to develop a classification model. The prediction sensitivity and specificity of PLSDA, respectively, reached 0.917 and 0.950. This study demonstrates the potential of combining electronic tongue system and chemometrics as an effective tool for specific geographical origins detection in Anji-White tea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.