In order to study the nonlinearity during the start-oscillation of thermo-acoustic instability, an experimental setup was built. The growing process of nonlinearity during the start-oscillation of thermo-acoustic instability was captured and analyzed. Experimental results revealed that after a suitable resonance mode corresponding to the structural of the combustor was selected, the pressure perturbations inside the combustor grow in amplitude into a very large amplitude and self-excited oscillation in a very short period of time. Then, slowly, the nonlinear effects adjust the shapes of pressure waveforms and amplify the oscillations. Ultimately, a limit-cycle oscillation with smooth and uniform pressure waveforms was obtained, and the acoustic waves exhibit only the main resonance mode, damping other modes of instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.