Honeycomb aerogel composites were fabricated by reinforcing selected regions of a native aerogel matrix using photopolymerization. First, alcogels were synthesized by hydrolysis−condensation of a siloxane, and by adding a multifunctional acrylic monomer and a visible-light initiator to the gelation solution. Alcogels were then placed on a programmable translation stage and exposed to a laser. Polymerization and mechanical reinforcement were induced in the exposed regions. After exposure alcogels were dried supercritically. Thermal conductivity and out-of-plane modulus of the resulting honeycombs could be varied between values typical of native aerogels (11 mW/mK and 0.75 MPa) and those of uniformly polymerized composites (65.8 mW/mK and 36.26 MPa) by varying the translation stage speed between 2 and 3 mm/s. The results were interpreted using a rule-of-mixtures model. The mechanical properties of the composites were also investigated using finite element analysis.
Increasing freight car loads demand higher performance tapered roller bearings. As the stress state on railway bearing applications continues to increase, further advancement in the modeling tools and methods used for subsurface contact stress evaluations are needed. Heat treat specifications and contact geometries for railway bearings were originally developed for ideal load conditions. However, in railroad applications, tapered roller bearings are exposed to a vast range of load conditions that are seldom perfect. Moreover, when comparing global rail markets, there are often differences in bearing loads, railcar wear conditions, maintenance practices, and reliability versus utilization expectations. Advanced modeling techniques need to be developed by bearing designers in order to meet the specific needs of each individual rail market.
Prior research has shown that subsurface stresses, resulting from rolling contact, are the primary factor in the development of fatigue cracks in railway bearings. In addition, finite element modeling software has previously been used to analyze Hertzian contact stresses under rolling contact. Recent advancements in the technology and computational power of finite element methods can be used to numerically analyze more detailed simulations of complex geometries and biased load conditions in railway bearings. These improvements in the tapered roller bearing modeling methodology are necessary to determine the material, heat treat specifications, and geometry required to meet the demands of specific railway bearing applications. Furthermore, the specific risks associated with some common railway bearing design and modeling assumptions will be evaluated. An exploratory list of these assumptions include: line versus point contact, load deflection factor, zero contact angle, rigid body assumptions, linear material behavior, neglect for overload, and uniform loading on the bearing. Emphasis will be placed on potential improvements in the theoretical and finite element prediction of surface and subsurface stresses in railway bearings under rolling contact with a review of prior research on the subject.
In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.