A brain tumor is a distorted tissue wherein cells replicate rapidly and indefinitely, with no control over tumor growth. Deep learning has been argued to have the potential to overcome the challenges associated with detecting and intervening in brain tumors. It is well established that the segmentation method can be used to remove abnormal tumor regions from the brain, as this is one of the advanced technological classification and detection tools. In the case of brain tumors, early disease detection can be achieved effectively using reliable advanced A.I. and Neural Network classification algorithms. This study aimed to critically analyze the proposed literature solutions, use the Visual Geometry Group (VGG 16) for discovering brain tumors, implement a convolutional neural network (CNN) model framework, and set parameters to train the model for this challenge. VGG is used as one of the highest-performing CNN models because of its simplicity. Furthermore, the study developed an effective approach to detect brain tumors using MRI to aid in making quick, efficient, and precise decisions. Faster CNN used the VGG 16 architecture as a primary network to generate convolutional feature maps, then classified these to yield tumor region suggestions. The prediction accuracy was used to assess performance. Our suggested methodology was evaluated on a dataset for brain tumor diagnosis using MR images comprising 253 MRI brain images, with 155 showing tumors. Our approach could identify brain tumors in MR images. In the testing data, the algorithm outperformed the current conventional approaches for detecting brain tumors (Precision = 96%, 98.15%, 98.41% and F1-score = 91.78%, 92.6% and 91.29% respectively) and achieved an excellent accuracy of CNN 96%, VGG 16 98.5% and Ensemble Model 98.14%. The study also presents future recommendations regarding the proposed research work.
Objective: Schizophrenia (SZ) is a functional mental condition that has a significant impact on patients’ social lives. As a result, accurate diagnosis of SZ has attracted researchers’ interest. Based on previous research, resting-state functional magnetic resonance imaging (rsfMRI) reported neural alterations in SZ. In this study, we attempted to investigate if dynamic functional connectivity (dFC) could reveal changes in temporal interactions between SZ patients and healthy controls (HC) beyond static functional connectivity (sFC) in the cuneus, using the publicly available COBRE dataset. Methods: Sliding windows were applied to 72 SZ patients’ and 74 healthy controls’ (HC) rsfMRI data to generate temporal correlation maps and, finally, evaluate mean strength (dFC-Str), variability (dFC-SD and ALFF) in each window, and the dwelling time. The difference in functional connectivity (FC) of the cuneus between two groups was compared using a two-sample t-test. Results: Our findings demonstrated decreased mean strength connectivity between the cuneus and calcarine, the cuneus and lingual gyrus, and between the cuneus and middle temporal gyrus (TPOmid) in subjects with SZ. Moreover, no difference was detected in variability (standard deviation and the amplitude of low-frequency fluctuation), the dwelling times of all states, or static functional connectivity (sFC) between the groups. Conclusions: Our verdict suggest that dynamic functional connectivity analyses may play crucial roles in unveiling abnormal patterns that would be obscured in static functional connectivity, providing promising impetus for understanding schizophrenia disease.
BackgroundParkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by bradykinesia, tremor, and rigidity among other symptoms. With a 70% cumulative prevalence of dementia in PD, cognitive impairment and neuropsychiatric symptoms are frequent.Materials and methodsIn this study, we looked at anatomical brain differences between groups of patients and controls. A total of 138 people with PD were compared to 64 age-matched healthy people using voxel-based morphometry (VBM). VBM is a fully automated technique that allows for the identification of regional differences in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) allowing for an objective comparison of brains of different groups of people. We used statistical parametric mapping for image processing and statistical analysis.ResultsIn comparison to controls, PD patients had lower GM volumes in the left middle cingulate, left lingual gyrus, right calcarine and left fusiform gyrus, also PD patients indicated lower WM volumes in the right middle cingulate, left lingual gyrus, right calcarine, and left inferior occipital gyrus. Moreover, PD patients group demonstrated higher CSF in the left caudate compared to the controls.ConclusionPhysical fragility and cognitive impairments in PD may be detected more easily if anatomical abnormalities to the cingulate gyrus, occipital lobe and the level of CSF in the caudate are identified. Thus, our findings shed light on the role of the brain in PD and may aid in a better understanding of the events that occur in PD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.