The research elaborates on the mechanical properties at the Al (111)/6H-SiC (0001) interface based on the density functional theory. Because of the difference in atom category at the interface of 6H-SiC (0001), it takes the C-terminated interface and Si-terminated interface into account. As indicated by the gross energy computing results at the two interfaces, the C-terminated Al (111)/6H-SiC (0001) interface demonstrates a greater adhesion force than the Si-terminated counterpart. Throughout detailed analysis on the bonding mechanism, surface hybridization and charge transfer at the Al (111)/6H-SiC (0001) reaction interface, the research reveals its strong covalent characteristics. According to the comparative study on the ideal tensile strength and general stacking fault energy at varying cleavage surfaces, a conclusion can be fitly reached that the fracture at the Al (111)/6H-SiC (0001) interface is easily seen in Al-Al bonds in the Al matrix instead of C(Si)-Al bonds at the interface. Despite the greater adhesion energy of the C-Al bond than the Si-Al bond, Al-Al bonds close to the C-terminated Al (111)/6H-SiC (0001) interface easily fracture due to the low ideal tensile strength.
To improve the conductivity of nickel silicate as anode material of lithium ion batteries, nickel silicate nanosheets anchored on reduced graphene oxide composite is synthesized via hydrothermal method using sandwich-like silica/graphene oxide as raw material. Nickel silicate nanosheets anchor on both sides of the reduced graphene oxide and cross each other to form net-like structure. The thickness of the nanosheets is about 15 nm. The composite shows an optimal electrochemical performance as lithium ion battery anode material. The initial capacity is 1525.7 mAh g-1 and the capacity retains 815.5 mAh g-1 after 50 cycles at the current density of 50 mA g-1. It exhibits good rate performance. When the current density is increased to 5000 mA g-1, the average capacity is as high as 415.8 mAh g-1. The composite also demonstrates an exceptional high cycling stability with the capacity of 423.4 mAh g-1 after 1000 cycles.
In this work, effects of 20 transition element additives on the interfacial adhesion energy and electronic structure of Al (111)/6H-SiC (0001) interfaces have been studied by first principles method. For clean Al (111)/6H–SiC (0001) interfaces, both Si-terminated and C-terminated interfaces have covalent bond characteristics. The C-terminated interface has stronger binding energy, which is mainly due to the stronger covalent bond formed by the larger charge transfer between C and Al. The results show that the introduction of many transition elements, such as 3d transitional group Mn, Fe, Co, Ni, Cu, Zn and 4d transitional group Tc, Ru, Rh, Pd, Ag, can improve the interfacial adhesion energy of the Si-terminated Al (111)/6H-SiC (0001) interface. However, for the C-terminated Al (111)/6H-SiC (0001) interface, only the addition of Co element can improve the interfacial adhesion energy. Bader charge analysis shows that the increase of interfacial binding energy is mainly attributed to more charge transfer.
Based on the first-principle, the friction anisotropy, structural super-lubricity and oxidation induced ultra-low friction of black phosphorus at atomic scale under different loads have been studied. The results show that the interface friction of black phosphorus is anisotropic, that is, the friction along the armchair direction is greater than that along the zigzag direction. Moreover, the friction between the black phosphorus interfaces shows a structural superlubricity property, and the incommensurate interface friction is approximately one thousandth of the commensurate interface friction, which is mainly due to the less electronic charge and the smaller amplitude of electronic charge change between the incommensurate interfaces during the friction process. In addition, the oxidation of black phosphorus is beneficial for lubrication between interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.