There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc 1 . Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.T he discovery of atovaquone 20 years ago validated the malaria parasite's mitochondrial electron transport chain (ETC) as an exploitable drug target. Atovaquone targets the ETC at the level of the bc 1 complex (1), with inhibition preventing proton pumping, resulting in a loss of mitochondrial membrane potential (2) and eventual organelle dysfunction, an important function of which is to provide intermediates for pyrimidine synthesis (3, 4). The bc 1 complex requires reducing equivalents provided by ubiquinol, which in turn is generated by membrane-bound dehydrogenases upstream in the ETC that catalyze redox reactions by reducing ubiquinone. The parasite lacks the canonical protonmotive NADH dehydrogenase (Complex I) but instead harbors a bacterial-like type II NADH:ubiquinone oxidoreductase, Plasmodium falciparum NDH2 (PfNDH2) (5). Based on these key observations, we undertook a drug-discovery initiative to develop costeffective inhibitors capable of inhibiting PfNDH2 with the goal of providing antimalarials that overcome the limitations of the expensive atovaquone. Although our initial drug-discovery efforts were focused on optimization of activity versus PfNDH2, we found, during hit-to-lead development, that optimized structures with single-digit nanomolar activity versus the primary target ...
A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure–activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC50 against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc1, and studies to determine the potential advantage of this dual-targeting effect are in progress.
32 years after the first, and still the only, catalytic asymmetric intramolecular aldol reaction was published in this journal, the proline‐catalyzed Hajos–Parrish–Eder–Sauer–Wiechert reaction is extended for the first time to catalytic asymmetric enolexo aldolizations. The process provides substituted cyclohexanes in excellent diastereo‐ and enantioselectivities. For example, heptanedial is converted into the corresponding cyclic anti‐configured aldol in 99 % ee (see scheme).
We report the syntheses and activities of a wide range of thiazolides [viz. 2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis B virus replication, with QSAR analysis of our results. The prototypical thiazolide, nitazoxanide [2-hydroxybenzoyl-N-(5-nitrothiazol-2-yl)amide; NTZ] 1 is a broad spectrum antiinfective agent, effective against anaerobic bacteria, viruses and parasites. By contrast, 2-hydroxybenzoyl-N-(5-chlorothiazol-2-yl)amide 3 is a novel, potent and selective inhibitor of hepatitis B replication (EC50 = 0.33 μm) but is inactive against anaerobes. Several 4′- and 5′-substituted thiazolides show good activity against HBV; by contrast, some related salicyloylanilides show a narrower spectrum of activity. The ADME properties of 3 are similar to 1, viz. the O-acetate is an effective prodrug and the O-aryl glucuronide is a major metabolite. The QSAR study shows a good correlation of observed EC90 s for intracellular virions with thiazolide structural parameters. Finally we discuss the mechanism of action of thiazolides in relation to the present results.
Despite intense efforts, there has not been a truly new antimalarial, possessing a novel mechanism of action, registered for over 10 years. By virtue of a novel mode of action, it is hoped that the global challenge of multidrug-resistant parasites can be overcome, as well as developing drugs that possess prophylaxis and/or transmission-blocking properties, towards an elimination agenda. Many target-based and whole-cell screening drug development programs have been undertaken in recent years and here an overview of specific projects that have focused on targeting the parasite's mitochondrial electron transport chain is presented. Medicinal chemistry activity has largely focused on inhibitors of the parasite cytochrome bc1 Complex (Complex III) including acridinediones, pyridones and quinolone aryl esters, as well as inhibitors of dihydroorotate dehydrogenase that includes triazolopyrimidines and benzimidazoles. Common barriers to progress and opportunities for novel chemistry and potential additional electron transport chain targets are discussed in the context of the target candidate profiles for uncomplicated malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.