In this study, the influence of pH, electrolyte concentration and type of ionic species (such as LiCl, NaCl, KCl, RbCl, CsCl, CaCl2, AlCl3) on the electrokinetic properties (zeta potential and electrokinetic charge density) of montmorillonite has been quantified. The zeta potential of montmorillonite particles did not change significantly with change in pH. The valencies of the ions have proven to have a great influence on the electrokinetic behaviour of the suspension. There is a gradual decrease in the zeta potential (from —24 mV to —12 mV) with increase in monovalent electrolyte concentration (from 10-4 M to 10-1 M). At any monovalent electrolyte concentration, the magnitude of the zeta potential increased with the electrolytes in the order Li+ > Na+ > K+ > Rb+ > Cs+. The zeta potential of the montmorillonite minerals in CaCl2 solutions illustrated the same behaviour as the monovalent cations. Less negative values were obtained for the CaCl2 electrolyte (∼–10 mV) due to the greater valence of the ions. A sign reversal was observed at an AlCl3 concentration of 5 x 10-4 M, and, at greater concentrations, zeta potential values had a positive sign (∼20 mV).The electrokinetic charge density of montmorillonite showed similar trends of variation in mono and divalent electrolyte solutions. Up to concentrations of ∼10-3 M, it remained practically constant at ∼0.5 x 10-3Cm-2, while for greater electrolyte concentrations the negative charge produced more negative values (–16 x 10-3Cm-2). The electrokinetic charge density of montmorillonite particles was constant at low AlCl3 concentrations, but at certain concentrations it increased rapidly and changed sign to positive.
Synthesis of poly(styrene-block-tetrahydrofuran) (PSt-b-PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/ MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt-b-PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt-b-PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments.
The adsorption of β‐carotene from solution in benzene on acid‐activated Canakkale montmorillonite of Turkey has been investigated. The adsorption isotherm had two steps. The first step was of the Langmuir type, and the isosteric heat of adsorption corresponding to this step was equal to −193.514 kJ/mol. The decrease in the total number of acid sites of the clay surface was determined to be 0.45×10−4 mol/g clay by nonaqueous titration with diethylamine. The phenomenon seems to be mainly a chemisorption stemming from the interaction of β‐carotene with acid sites. Also, the activated clay acts as an oxidation catalyst on the β‐carotene left in the solution.
Abstracts
The variations in the structure of mineral during adsorption have been examined comparing the results of X‐ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetry (TG) and infrared (IR) spectroscopy of the acid activated montmorillonite clay mineral before and after adsorption of β‐carotene. Based on the results, it was concluded that β‐carotene attaches to the clay surface in the form of carbonium ions either by forming hydrogen bonds with Brönsted sites or by forming coordination bonds with Lewis sites of the activated clay mineral.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.