Bacteria persist under constant threat of predation by bacterial viruses (phages). Bacteria-phage conflicts result in evolutionary arms races often driven by mobile genetic elements (MGEs). One such MGE, a phage satellite in Vibrio cholerae called PLE, provides specific and robust defense against a pervasive lytic phage, ICP1. The interplay between PLE and ICP1 has revealed strategies for molecular parasitism allowing PLE to hijack ICP1 processes in order to mobilize. Here, we describe the mechanism of PLE-mediated transcriptional manipulation of ICP1 structural gene transcription. PLE encodes a novel DNA binding protein, CapR, that represses ICP1’s capsid morphogenesis operon. Although CapR is sufficient for the degree of capsid repression achieved by PLE, its activity does not hinder the ICP1 lifecycle. We explore the consequences of repression of this operon, demonstrating that more stringent repression achieved through CRISPRi restricts both ICP1 and PLE. We also discover that PLE transduces in modified ICP1-like particles. Examination of CapR homologs led to the identification of a suite of ICP1-encoded homing endonucleases, providing a putative origin for the satellite-encoded repressor. This work unveils a facet of the delicate balance of satellite-mediated inhibition aimed at blocking phage production while successfully mobilizing in a phage-derived particle.
Here we present an examination of type IV pilus genes associated with competence and twitching in the bacterium Acinetobacter baylyi (strain ADP1, BD413). We used bioinformatics to identify potential competence and twitching genes and their operons. We measured the competence and twitching phenotypes of the bioinformatically-identified genes. These results demonstrate that competence and twitching in A. baylyi both rely upon a core of the same type IV pilus proteins. The core includes the inner membrane assembly platform (PilC), a periplasmic assemblage connecting the inner membrane assembly platform to the secretin (ComM), a secretin (ComQ) and its associated pilotin (PilF) that assists with secretin assembly and localization, both cytoplasmic pilus retraction ATPases (PilU, PilT), and pilins (ComP, ComB, PilX). Proteins not needed for both competence and twitching are instead found to specialize in either of the two traits. The pilins are varied in their specialization with some required for either competence (FimT) and others for twitching (ComE). The protein that transports DNA across the inner membrane (ComA) specializes in competence, while signal transduction proteins (PilG, PilS, and PilR) specialize in twitching. Taken together our results suggest that the function of accessory proteins should not be based on homology alone. In addition the results suggest that in A. baylyi the mechanisms of natural transformation and twitching are mediated by the same set of core Type IV pilus proteins with distinct specialized proteins required for each phenotype. Finally, since competence requires multiple pilins as well as both pilus retraction motors PilU and PilT, this suggests that A. baylyi employs a pilus in natural transformation.
Bacteriophages or phages—viruses of bacteria—are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae–specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1’s CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Macroautophagy/autophagy is a well-organized process of intracellular degradation, which is rapidly activated under starvation conditions. Recent data demonstrate a transcriptional upregulation of several autophagy genes as a mechanism that controls autophagy in response to starvation. Here we report that despite the significant upregulation of mRNA of the essential autophagy initiation gene ULK1, its protein level is rapidly reduced under starvation. Although both autophagic and proteasomal systems contribute to the degradation of ULK1, under prolonged nitrogen deprivation, its level was still reduced in ATG7 knockout cells, and only initially stabilized in cells treated with the lysosomal or proteasomal inhibitors. We demonstrate that under starvation, protein translation is rapidly diminished and, similar to treatments with the proteosynthesis inhibitors cycloheximide or anisomycin, is associated with a significant reduction of ULK1. Furthermore, it was found that inhibition of the mitochondrial respiratory complexes or the mitochondrial ATP synthase function that could also take place in the absence of substrates, promote upregulation of ULK1 mRNA and protein expression in an AMPK-dependent manner in U1810 lung cancer cells growing in complete culture medium. These inhibitors could also drastically increase the ULK1 protein in U1810 cells with knockout of ATG13, where the ULK1 expression is significantly diminished. However, such upregulation of ULK1 protein is negligible under starvation conditions, further signifying the contribution of translation and suggesting that transcriptional upregulation of ULK1 protein will be diminished under such conditions. Thus, we propose a model where inhibition of protein translation, together with the degradation systems, limit autophagy during starvation.
Phage satellites commonly remodel capsids they hijack from the phages they parasitize, but only a few mechanisms regulating the change in capsid size have been reported. Here, we investigated how a satellite fromVibrio cholerae, PLE, remodels the capsid it has been predicted to steal from the phage ICP1 (1). We identified that a PLE-encoded protein, TcaP, is both necessary and sufficient to form small capsids during ICP1 infection. Interestingly, we found that PLE is dependent on small capsids for efficient transduction of its genome, making it the first satellite to have this requirement. ICP1 isolates that escaped TcaP-mediated remodeling acquired substitutions in the coat protein, suggesting an interaction between these two proteins. With a procapsid-like-particle (PLP) assembly platform inEscherichia coli, we demonstrated that TcaP is abona fidescaffold that regulates the assembly of small capsids. Further, we studied the structure of PLE PLPs using cryogenic electron microscopy and found that TcaP is an external scaffold, that is functionally and largely structurally similar to the external scaffold, Sid, encoded by the divergent satellite P4 (2). Finally, we showed that TcaP is largely conserved across PLEs. Together, these data support a model in which TcaP directs the assembly of small capsids comprised of ICP1 coat proteins, which inhibits the complete packaging of the ICP1 genome and permits more efficient packaging of replicated PLE genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.