A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually, and a smooth term modelling the data formation model as well as other constraints. Sparsity-constrained and Bayesian formulations are examined as special cases. A splitting algorithm is presented to solve this problem and its convergence is established in infinite-dimensional spaces under mild conditions on the penalization functions, which need not be differentiable. Numerical simulations demonstrate applications to frame-based image restoration.
Abstract-We propose a 2D generalization to the M -band case of the dual-tree decomposition structure (initially proposed by N. Kingsbury and further investigated by I. Selesnick) based on a Hilbert pair of wavelets. We particularly address (i) the construction of the dual basis and (ii) the resulting directional analysis. We also revisit the necessary pre-processing stage in the M -band case. While several reconstructions are possible because of the redundancy of the representation, we propose a new optimal signal reconstruction technique, which minimizes potential estimation errors. The effectiveness of the proposed Mband decomposition is demonstrated via denoising comparisons on several image types (natural, texture, seismics), with various M -band wavelets and thresholding strategies. Significant improvements in terms of both overall noise reduction and direction preservation are observed.
Regularization approaches have demonstrated their effectiveness for solving ill-posed problems. However, in the context of variational restoration methods, a challenging question remains, namely how to find a good regularizer. While total variation introduces staircase effects, wavelet domain regularization brings other artefacts, e.g. ringing. However, a trade-off can be made by introducing a hybrid regularization including several terms non necessarily acting in the same domain (e.g. spatial and wavelet transform domains). While this approach was shown to provide good results for solving deconvolution problems in the presence of additive Gaussian noise, an important issue is to efficiently deal with this hybrid regularization for more general noise models. To solve this problem, we adopt a convex optimization framework where the criterion to be minimized is split in the sum of more than two terms. For spatial domain regularization, isotropic or anisotropic total variation definitions using various gradient filters are considered. An accelerated version of the Parallel Proximal Algorithm is proposed to perform the minimization. Some difficulties in the computation of the proximity operators involved in this algorithm are also addressed in this paper. Numerical experiments performed in the context of Poisson data recovery, show the good behaviour of the algorithm as well as promising results concerning the use of hybrid regularization techniques.
The objective of this paper is to develop methods for solving image recovery problems subject to constraints on the solution. More precisely, we will be interested in problems which can be formulated as the minimization over a closed convex constraint set of the sum of two convex functions f and g, where f may be non-smooth and g is differentiable with a Lipschitz-continuous gradient. To reach this goal, we derive two types of algorithms that combine forward-backward and Douglas-Rachford iterations. The weak convergence of the proposed algorithms is proved. In the case when the Lipschitz-continuity property of the gradient of g is not satisfied, we also show that, under some assumptions, it remains possible to apply these methods to the considered optimization problem by making use of a quadratic extension technique. The effectiveness of the algorithms is demonstrated for two wavelet-based image restoration problems involving a signal-dependent Gaussian noise and a Poisson noise, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.