The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species-less diverse than the North American tree flora-accounts for half of the world's most diverse tree community
The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples
Aim Tropical forests store 25% of global carbon and harbour 96% of the world's tree species, but it is not clear whether this high biodiversity matters for carbon storage. Few studies have teased apart the relative importance of forest attributes and environmental drivers for ecosystem functioning, and no such study exists for the tropics. Location Neotropics. Methods We relate aboveground biomass (AGB) to forest attributes (diversity and structure) and environmental drivers (annual rainfall and soil fertility) using data from 144,000 trees, 2050 forest plots and 59 forest sites. The sites span the complete latitudinal and climatic gradients in the lowland Neotropics, with rainfall ranging from 750 to 4350 mm year−1. Relationships were analysed within forest sites at scales of 0.1 and 1 ha and across forest sites along large‐scale environmental gradients. We used a structural equation model to test the hypothesis that species richness, forest structural attributes and environmental drivers have independent, positive effects on AGB. Results Across sites, AGB was most strongly driven by rainfall, followed by average tree stem diameter and rarefied species richness, which all had positive effects on AGB. Our indicator of soil fertility (cation exchange capacity) had a negligible effect on AGB, perhaps because we used a global soil database. Taxonomic forest attributes (i.e. species richness, rarefied richness and Shannon diversity) had the strongest relationships with AGB at small spatial scales, where an additional species can still make a difference in terms of niche complementarity, while structural forest attributes (i.e. tree density and tree size) had strong relationships with AGB at all spatial scales. Main conclusions Biodiversity has an independent, positive effect on AGB and ecosystem functioning, not only in relatively simple temperate systems but also in structurally complex hyperdiverse tropical forests. Biodiversity conservation should therefore be a key component of the UN Reducing Emissions from Deforestation and Degradation strategy.
AimThe accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset.LocationTropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1MethodsTwo recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons.ResultsThe two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%.Main conclusionsPantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.