IntroductionDengue has emerged as a major public health problem in Sri Lanka. Vector control at community level is a frequent and widespread strategy for dengue control. The aim of the study was to assess Aedes mosquito breeding sites and the prevention practices of community members in a heavily urbanized part of Colombo.MethodsA cross-sectional entomological survey was conducted from April to June 2013 in 1469 premises located in a subdistrict of the City of Colombo. Types of breeding sites and, where found, their infestation with larvae or pupae were recorded. Furthermore, a questionnaire was administered to the occupants of these premises to record current practices of dengue vector control.ResultsThe surveyed premises consisted of 1341 residential premises and 110 non-residential premises (11 schools, 99 work or public sites), 5 open lands, and 13 non-specified. In these 1469 premises, 15447 potential breeding sites suitable to host larvae of pupae were found; of these sites18.0% contained water. Among the 2775 potential breeding sites that contained water, 452 (16.3%) were positive for larvae and/or pupae. Schools were associated with the proportionally highest number of breeding sites; 85 out of 133 (63.9%) breeding sites were positive for larvae and/or pupae in schools compared with 338 out of 2288 (14.8%) in residential premises. The odds ratio (OR) for schools and work or public sites for being infested with larvae and/or pupae was 2.77 (95% CI 1.58, 4.86), when compared to residential premises. Occupants of 80.8% of the residential premises, 54.5% of the schools and 67.7% of the work or public sites reported using preventive measures. The main prevention practices were coverage of containers and elimination of mosquito breeding places. Occupants of residential premises were much more likely to practice preventive measures than were those of non-residential premises (OR 2.23; 1.49, 3.36).ConclusionSchools and working sites were associated with the highest numbers of breeding sites and lacked preventive measures for vector control. In addition to pursuing vector control measures at residential level, public health strategies should be expanded in schools and work places.
BackgroundDengue is an important neglected tropical disease, with more than half of the world’s population living in dengue endemic areas. Good understanding of dengue transmission sites is a critical factor to implement effective vector control measures.MethodsA cohort of 1,811 students from 10 schools in rural, semi-rural and semi-urban Thailand participated in this study. Seroconversion data and location of participants’ residences and schools were recorded to determine spatial patterns of dengue infections. Blood samples were taken to confirm dengue infections in participants at the beginning and the end of school term. Entomological factors included a survey of adult mosquito density using a portable vacuum aspirator during the school term and a follow up survey of breeding sites of Aedes vectors in schools after the school term. Clustering analyses were performed to detect spatial aggregation of dengue infections among participants.ResultsA total of 57 dengue seroconversions were detected among the 1,655 participants who provided paired blood samples. Of the 57 confirmed dengue infections, 23 (40.0%) occurred in students from 6 (6.8%) of the 88 classrooms in 10 schools. Dengue infections did not show significant clustering by residential location in the study area. During the school term, a total of 66 Aedes aegypti mosquitoes were identified from the 278 mosquitoes caught in 50 classrooms of the 10 schools. In a follow-up survey of breeding sites, 484 out of 2,399 water containers surveyed (20.2%) were identified as active mosquito breeding sites.Discussion and ConclusionOur findings suggest that dengue infections were clustered among schools and among classrooms within schools. The schools studied were found to contain a large number of different types of breeding sites. Aedes vector densities in schools were correlated with dengue infections and breeding sites in those schools. Given that only a small proportion of breeding sites in the schools were subjected to vector control measures (11%), this study emphasizes the urgent need to implement vector control strategies at schools, while maintaining efforts at the household level.
Elimination of visceral leishmaniasis (VL) in Southeast Asia and global control of cutaneous leishmaniasis (CL) and VL are priorities of the World Health Organization (WHO). But is the existing evidence good enough for public health recommendations? This meta-review summarises the available and new evidence for vector control with the aims of establishing what is known about the value of vector control for the control of CL and VL, establishing gaps in knowledge, and particularly focusing on key recommendations for further scientific work. This meta-review follows the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria, including (1) systematic reviews and meta-analyses (SRs/MAs) for (2) vector control methods and strategies and (3) for the control of CL and/or VL. Nine SRs/MAs were included, with different research questions and inclusion/exclusion criteria. The methods analysed for vector control can be broadly classified into (1) indoor residual spraying (IRS); (2) insecticide-treated nets (ITNs; including insecticide-impregnated bednets); (3) insecticide-treated curtains (ITCs; including insecticide-treated house screening); (4) insecticide-treated bedsheets (ITSs) and insecticide-treated fabrics (ITFs; including insecticide-treated clothing) and (5) durable wall lining (treated with insecticides) and other environmental measures to protect the house; (6) control of the reservoir host; and (7) strengthening vector control operations through health education. The existing SRs/MAs include a large variation of different primary studies, even for the same specific research sub-question. Also, the SRs/MAs are outdated, using available information until earlier than 2018 only. Assessing the quality of the SRs/MAs, there is a considerable degree of variation. It is therefore very difficult to summarise the results of the available SRs/MAs, with contradictory results for both vector indices and—if available—human transmission data. Conclusions of this meta-review are that (1) existing SRs/MAs and their results make policy recommendations for evidence-based vector control difficult; (2) further work is needed to establish efficacy and community effectiveness of key vector control methods with specific SRs and MAs (3) including vector and human transmission parameters; and (4) attempting to conclude with recommendations in different transmission scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.