Early and progressive colonization of the healthy brain is one hallmark of diffuse gliomas, including glioblastomas. We recently discovered ultralong (Ͼ10 to hundreds of microns) membrane protrusions [tumor microtubes (TMs)] extended by glioma cells. TMs have been associated with the capacity of glioma cells to effectively invade the brain and proliferate. Moreover, TMs are also used by some tumor cells to interconnect to one large, resistant multicellular network. Here, we performed a correlative gene-expression microarray and in vivo imaging analysis, and identified novel molecular candidates for TM formation and function. Interestingly, these genes were previously linked to normal CNS development. One of the genes scoring highest in tests related to the outgrowth of TMs was tweety-homolog 1 (TTYH1), which was highly expressed in a fraction of TMs in mice and patients. Ttyh1 was confirmed to be a potent regulator of normal TM morphology and of TM-mediated tumor-cell invasion and proliferation. Glioma cells with one or two TMs were mainly responsible for effective brain colonization, and Ttyh1 downregulation particularly affected this cellular subtype, resulting in reduced tumor progression and prolonged survival of mice. The remaining Ttyh1-deficient tumor cells, however, had more interconnecting TMs, which were associated with increased radioresistance in those small tumors. These findings imply a cellular and molecular heterogeneity in gliomas regarding formation and function of distinct TM subtypes, with multiple parallels to neuronal development, and suggest that Ttyh1 might be a promising target to specifically reduce TM-associated brain colonization by glioma cells in patients.
Tryptophan metabolism is a key process that shapes the immunosuppressive tumor microenvironment. The two rate-limiting enzymes that mediate tryptophan depletion, indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), have moved into the focus of research and inhibitors targeting IDO and TDO have entered clinical trials. Local tryptophan depletion is generally viewed as the crucial immunosuppressive mechanism. In T cells, the kinase general control non-derepressible 2 (GCN2) has been identified as a molecular sensor of tryptophan deprivation. GCN2 activation by tryptophan depletion induces apoptosis and mitigates T cell proliferation. Here, we investigated whether GCN2 attenuates tumor rejection in experimental B16 melanoma using T cell-specific knockout mice. Our data demonstrate that GCN2 in T cells did not affect immunity to B16 tumors even when animals were treated with antibodies targeting cytotoxic T lymphocyte antigen-4 (CTLA4). GCN2-deficient gp100 TCR-transgenic T cells were equally effective as wild-type pmel T cells against gp100-expressing B16 melanomas after adoptive transfer and gp100 peptide vaccination. Even augmentation of tumoral tryptophan metabolism in B16 tumors by lentiviral overexpression of did not differentially affect GCN2-proficient vs. GCN2-deficient T cells . Importantly, GCN2 target genes were not upregulated in tumor-infiltrating T cells. MALDI-TOF MS imaging of B16 melanomas demonstrated maintenance of intratumoral tryptophan levels despite high tryptophan turnover, which prohibits a drop in tryptophan sufficient to activate GCN2 in tumor-infiltrating T cells. In conclusion, our results do not suggest that suppression of antitumor immune responses by tryptophan metabolism is driven by local tryptophan depletion and subsequent GCN2-mediated T cell anergy.
Purpose: Resistance is an obstacle of glioma therapy. Despite targeted interventions, tumors harbor primary resistance or become resistant over short course of treatment. This study examined the mouse double minute 2 (MDM2) inhibitor RG7388 together with radiotherapy and analyzed strategies to overcome acquired MDM2 inhibitor resistance in glioblastoma.Experimental Design: Effects of RG7388 and radiotherapy were analyzed in p53 wild-type glioblastoma cell lines and glioma-initiating cells. RG7388 resistant cells were generated by increasing RG7388 doses over 3 months. Regulated pathways were investigated by microarray, qRT-PCR, and immunoblot analysis and specifically inhibited to evaluate rational salvage therapies at RG7388 resistance. Effects of RG7388 and trametinib treatment were challenged in an orthotopical mouse model with RG7388 resistant U87MG glioblastoma cells.Results: MDM2 inhibition required functional p53 and showed synergistic activity with radiotherapy in first-line treatment. Long-term exposure to RG7388 induced resistance by activation of the extracellular signal-regulated kinases 1/2 (ERK1/2)-insulin growth factor binding protein 1 (IGFBP1) signaling cascade, which was specifically overcome by ERK1/2 pathway inhibition with trametinib and knockdown of IGFBP1. Combining trametinib with continued RG7388 treatment enhanced antitumor effects at RG7388 resistance in vitro and in vivo.Conclusions: These data provide a rationale for combining RG7388 and radiotherapy as first-line therapy with a specific relevance for tumors insensitive to alkylating standard chemotherapy and for the addition of trametinib to continued RG7388 treatment as salvage therapy after acquired resistance against RG7388 for clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.