In this paper, nonlinear dynamical equations of the flexible manipulator with a lumped payload at the free end are derived from Hamilton's principle. The obtained model consists of both distributed parameters and lumped parameters, namely, partial differential equations (PDEs) governing the flexible motion of links and boundary conditions in the form of ordinary differential equations (ODEs). Considering the great nonlinear approximation ability of the radial basis function (RBF) neural network, we propose a combined control algorithm that includes two parts: one is a boundary controller to track the desired joint positions and suppress the vibration of flexible links; another is a RBF neural network designed to compensate for the parametric uncertainties. The iteration criterion of the RBF neural network weight matrix is derived from the extended Lyapunov function. Stabilization analysis is further carried out theoretically via LaSalle’s invariance principle. Finally, the results of the numerical simulation verify that the proposed control law can realize the asymptotic convergence of tracking error and suppression of the elastic vibration as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.