Recent studies have revealed that single-layer transition-metal oxides and dichalcogenides (MX 2 ) might offer properties superior to those of graphene. So far, only very few MX 2 compounds have been synthesized as suspended single layers, and some of them have been exfoliated as thin sheets. Using first-principles structure optimization and phonon calculations based on density functional theory, we predict that, out of 88 different combinations of MX 2 compounds, several of them can be stable in free-standing, single-layer honeycomb-like structures. These materials have two-dimensional hexagonal lattices and have top-view appearances as if they consisted of either honeycombs or centered honeycombs. However, their bonding is different from that of graphene; they can be viewed as a positively charged plane of transition-metal atoms sandwiched between two planes of negatively charged oxygen or chalcogen atoms. Electron correlation in transition-metal oxides was treated by including Coulomb repulsion through LDA + U calculations. Our analysis of stability was extended to include in-plane stiffness, as well as ab initio, finite-temperature molecular dynamics calculations. Some of these single-layer structures are direct-or indirect-band-gap semiconductors, only one compound is half-metal, and the rest are either ferromagnetic or nonmagnetic metals. Because of their surface polarity, band gap, high in-plane stiffness, and suitability for functionalization by adatoms or vacancies, these single-layer structures can be utilized in a wide range of technological applications, especially as nanoscale coatings for surfaces contributing crucial functionalities. In particular, the manifold WX 2 heralds exceptional properties promising future nanoscale applications.
Layered semiconductors based on transition-metal chalcogenides usually cross from indirect bandgap in the bulk limit over to direct bandgap in the quantum (2D) limit. Such a crossover can be achieved by peeling off a multilayer sample to a single layer. For exploration of physical behavior and device applications, it is much desired to reversibly modulate such crossover in a multilayer sample. Here we demonstrate that, in a few-layer sample where the indirect bandgap and direct bandgap are nearly degenerate, the temperature rise can effectively drive the system toward the 2D limit by thermally decoupling neighboring layers via interlayer thermal expansion. Such a situation is realized in few-layer MoSe 2 , which shows stark contrast from the well-explored MoS 2 where the indirect and direct bandgaps are far from degenerate. Photoluminescence of few-layer MoSe 2 is much enhanced with the temperature rise, much like the way that the photoluminescence is enhanced due to the bandgap crossover going from the bulk to the quantum limit, offering potential applications involving external modulation of optical properties in 2D semiconductors. The direct bandgap of MoSe 2 , identified at 1.55 eV, may also promise applications in energy conversion involving solar spectrum, as it is close to the optimal bandgap value of single-junction solar cells and photoelechemical devices. KEYWORDS: 2D-Semiconductors, MoSe 2 , MoS 2 , photoluminescence, bandgap, temperature dependence T wo-dimensional (2D) materials have attracted much interest mainly owing to their exotic physical properties that are strikingly different from their three-dimensional (bulk) counterparts. Even though graphene, the most famous member of the 2D material family, possesses extraordinary properties 1 and is readily integrated in various applications, 2−4 the lack of a native bandgap in graphene has led to a broad search for other 2D semiconducting materials. More recently, the transitionmetal dichalcogenide (TMD) semiconductor MoS 2 has been focused on and has shown great potential in the field; singlelayer MoS 2 has been used as an integral part of transistors, 5−8 sensors, 9 and magnetic materials. 10 However, beyond MoS 2 , other layered TMDs offer a large variety of 2D materials with distinct properties.In this work we studied, for the first time, single-layer MoSe 2 mechanically exfoliated onto SiO 2 /Si. 11 Single-layer MoSe 2 displays good thermal stability with a 1.55 eV direct bandgap as determined from photoluminescence (PL) measurements. The PL peak intensity is enhanced dramatically from few-layer to single-layer as a result of the crossover from indirect bandgap in the bulk limit to direct bandgap in the quantum (2D) limit, similar to the behavior of MoS 2 . 12−14 More interestingly, we find that few-layer MoSe 2 flakes posssess a nearly degenerate indirect and direct bandgap, and an increase in temperature can effectively push the system toward the quasi-2D limit by thermally reducing the coupling between the layers. This response in f...
Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering.
In the monolayer limit, transition metal dichalcogenides become direct-bandgap, light-emitting semiconductors. The quantum yield of light emission is low and extremely sensitive to the substrate used, while the underlying physics remains elusive. In this work, we report over 100 times modulation of light emission efficiency of these two-dimensional semiconductors by physical adsorption of O2 and/or H2O molecules, while inert gases do not cause such effect. The O2 and/or H2O pressure acts quantitatively as an instantaneously reversible "molecular gating" force, providing orders of magnitude broader control of carrier density and light emission than conventional electric field gating. Physi-sorbed O2 and/or H2O molecules electronically deplete n-type materials such as MoS2 and MoSe2, which weakens electrostatic screening that would otherwise destabilize excitons, leading to the drastic enhancement in photoluminescence. In p-type materials such as WSe2, the molecular physisorption results in the opposite effect. Unique and universal in two-dimensional semiconductors, the effect offers a new mechanism for modulating electronic interactions and implementing optical devices.
We present our study on atomic, electronic, magnetic and phonon properties of one dimensional honeycomb structure of molybdenum disulfide (MoS 2 ) using first-principles plane wave method. Calculated phonon frequencies of bare armchair nanoribbon reveal the fourth acoustic branch and indicate the stability. Force constant and in-plane stiffness calculated in the harmonic elastic deformation range signify that the MoS 2 nanoribbons are stiff quasi one dimensional structures, but not as strong as graphene and BN nanoribbons. Bare MoS 2 armchair nanoribbons are nonmagnetic, direct band gap semiconductors. Bare zigzag MoS 2 nanoribbons become half-metallic as a result of the (2x1) reconstruction of edge atoms and are semiconductor for minority spins, but metallic for the majority spins. Their magnetic moments and spin-polarizations at the Fermi level are reduced as a result of the passivation of edge atoms by hydrogen. The functionalization of MoS 2 nanoribbons by adatom adsorption and vacancy defect creation are also studied. The nonmagnetic armchair nanoribbons attain net magnetic moment depending on where the foreign atoms are adsorbed and what kind of vacancy defect is created. The magnetization of zigzag nanoribbons due to the edge states is suppressed in the presence of vacancy defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.