Atrial fibrillation (AF) is a common supraventricular arrhythmia (SVA) in clinical practice and is characterized by uncoordinated electrical activity of the atria. This study aims to evaluate the influence on the forward solution of AF torso biomarkers under different levels of noise, 3D cardiorespiratory torso/atria morphologies, and number of atria electrodes. 2,048 atrial epicardium electrograms (AEGs) from 5 AF mathematical models were used to estimate 771 body surface potentials (BSPs). The BSPs and respective frequency/phase maps of are obtained after: (i) introduction of noise in the AEGs, (ii) 3D geometry torso/atria modification, and (iii) reduction in electrodes (from 2,048 to 256, 128, 64 e 32; interpolation methods: Linear/Laplacian). To reduce biomarkers disparity, a Butterworth bandpass filter (BPF) at different cut-off frequencies is applied on the AEGs prior BSPs estimation. The above methodology is extended to two AF patients (EDGAR database). The estimation of AF BSPs, in different noise ranges, limits the effectiveness of the forward solution. Phase biomarkers are sensitive to the AEGs' pre-processing strategy. The BPF around HDF showed the best agreement between the different SNR levels. Due to the 3D morphological changes, HDF areas variability increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.