BIOMATERIALS: DEPOSITION OF HYDROXYAPATITE ON Ticp SURFACES MODIFIED BY THERMAL ASPERSION. The osseointegrated titanium implants are reliable and safe alternatives to treatments for long periods of time. For surface modification, thermal aspersion of TiO 2 was used. The samples with and without TiO 2 were treated with NaOH and SBF in order to obtain a layer of HA. Characterization was done by SEM and FTIR. The images of HA obtained by SEM show a uniform morphology and a porous structure with spherical particles. The IR spectra show that the surface of Ticp/ TiO 2 is more favorable for the HA deposit, as can be seen by the increase of the crystalline structure and the very intense and defined bands of the OH group of HA that is verified about 3571 and 630 cm-1. Thus the Ticp/ TiO 2 surface presents a satisfactory nucleation of HA when compared to Ticp.
Commercial purity titanium (cp-Ti), and some of its alloys are important materials in the medical field because of their excellent biocompatibility and mechanical properties. Recently a simple chemical method to induce bioactivity in these inert metallic materials was reported. In this work, the biomimetic chemical process has been used to modify the surface of cp-Ti with the formation of a deposit layer of apatite (a calcium phosphate compound). The main purpose was to study the influence of heat treatment on changes in crystallinity in the deposited phases. X-ray diffraction analysis and scanning electron microscopy showed that the apatite coatings heat treated between 400 and 600 °C were less crystalline, similar to biological apatites. Upon heat treatment at temperatures above 700 °C, the apatite coatings appeared more crystalline, and were a mixture of hydroxyapatite, octacalcium phosphate and magnesium phosphate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.