Summary Retinal ganglion cell (RGC) replacement holds potential for restoring vision lost to optic neuropathy. Transplanted RGCs must undergo neuroretinal integration to receive afferent visual signals for processing and efferent transmission. To date, retinal integration following RGC transplantation has been limited. We sought to overcome key barriers to transplanted human stem cell-derived RGC integration. Following co-culture ex vivo on organotypic mouse retinal explants, human RGCs cluster and extend bundled neurites that remain superficial to the neuroretina, hindering afferent synaptogenesis. To enhance integration, we increased the cellular permeability of the internal limiting membrane (ILM). Extracellular matrix digestion using proteolytic enzymes achieved ILM disruption while minimizing retinal toxicity and preserving glial reactivity. ILM disruption is associated with dispersion rather than clustering of co-cultured RGC bodies and neurites, and increased parenchymal neurite ingrowth. The ILM represents a significant obstacle to transplanted RGC connectivity and its circumvention may be necessary for functional RGC replacement.
Retinal ganglion cell (RGC) replacement and optic nerve regeneration hold potential for restoring vision lost to optic neuropathy. Following transplantation, RGCs must integrate into the neuroretinal circuitry in order to receive afferent visual signals for processing and transmission to central targets. To date, the efficiency of RGC retinal integration following transplantation has been limited. We sought to characterize spontaneous interactions between transplanted human embryonic stem cell-derived RGCs and the recipient mature mammalian retina, and to identify and overcome barriers to the structural integration of transplanted neurons. Using an in vitro model system, following transplantation directly onto the inner surface of organotypic mouse retinal explants, human RGC somas form compact clusters and extend bundled neurites that remain superficial to the neural retinal tissue, hindering any potential for afferent synaptogenesis. To enhance integration, we explored methods to increase the cellular permeability of the internal limiting membrane (ILM). Digestion of extracellular matrix components using proteolytic enzymes was titrated to achieve disruption of the ILM while minimizing retinal toxicity and preserving endogenous retinal glial reactivity. Such ILM disruption is associated with dispersion rather than clustering of transplanted RGC bodies and neurites, and with a marked increase in transplanted RGC neurite extension into retinal parenchyma. The ILM appears to be a barrier to afferent retinal connectivity by transplanted RGCs and its circumvention may be necessary for successful functional RGC replacement through transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.