The shallow and deep hypothesis suggests that stream concentration‐discharge (CQ) relationships are shaped by distinct source waters from different depths. Under this hypothesis, baseflows are typically dominated by groundwater and mostly reflect groundwater chemistry, whereas high flows are typically dominated by shallow soil water and mostly reflect soil water chemistry. Aspects of this hypothesis draw on applications like end member mixing analyses and hydrograph separation, yet direct data support for the hypothesis remains scarce. This work tests the shallow and deep hypothesis using co‐located measurements of soil water, groundwater, and streamwater chemistry at two intensively monitored sites, the W‐9 catchment at Sleepers River (Vermont, United States) and the Hafren catchment at Plynlimon (Wales). At both sites, depth profiles of subsurface water chemistry and stream CQ relationships for the 10 solutes analyzed are broadly consistent with the hypothesis. Solutes that are more abundant at depth (e.g., calcium) exhibit dilution patterns (concentration decreases with increasing discharge). Conversely, solutes enriched in shallow soils (e.g., nitrate) generally exhibit flushing patterns (concentration increases with increasing discharge). The hypothesis may hold broadly true for catchments that share such biogeochemical stratifications in the subsurface. Soil water and groundwater chemistries were estimated from high‐ and low‐flow stream chemistries with average relative errors ranging from 24% to 82%. This indicates that streams mirror subsurface waters: stream chemistry can be used to infer scarcely measured subsurface water chemistry, especially where there are distinct shallow and deep end members.
Introduction: High rates of burnout, depression, anxiety, and insomnia in healthcare workers responding to the COVID-19 pandemic have been reported globally.Methods: Responding to the crisis, the Foundation for Professional Development (FPD) developed an e-learning course to support healthcare worker well-being and resilience. A self-paced, asynchronous learning model was used as the training intervention. Each module included practical, skill-building activities. An outcome evaluation was conducted to determine if completing the course improved healthcare worker knowledge of and confidence in the learning outcomes of the course, their use of resilience-building behaviours, their resilience, and their well-being. A secondary objective was to explore if there were any associations between behaviours, resilience, and well-being. Participants completed pre- and post-course questionnaires to measure knowledge of and confidence in the learning outcomes, y, frequency of self-reported resilience-building behaviours, and levels of resilience (CD-RISC) and well-being (WHO-5). Results were analysed in STATA using paired T-tests, univariate and multivariate linear regression models.Results: Participants (n = 474; 77.6% female; 55.7% primary care) exhibited significant increases in knowledge, confidence, resilience-building behaviour, resilience, and well-being scores. Statistically significant improvements in the frequency of resilience-building behaviours led to significant improvements in resilience (0.25 points; 95% CI: 0.06, 0.43) and well-being (0.21 points; 95% CI: 0.05, 0.36). Increasing changes in well-being scores had a positive effect on change in resilience scores (β = 0.20; 95% CI: 0.11, 0.29), and vice versa (β = 0.28; 95% CI: 0.14, 0.41).Conclusion: A healthcare worker e-learning course can build knowledge and skills that may prompt changes in resilience-building behaviours and improvements in well-being and resilience scores. The findings suggest that e-learning courses may improve more than competency-based outcomes alone but further research is warranted to further explore these relationships.
Understanding and predicting catchment responses to a regional disturbance is difficult because catchments are spatially heterogeneous systems that exhibit unique moderating characteristics. Changes in precipitation composition in the Northeastern U.S. is one prominent example, where reduction in wet and dry deposition is hypothesized to have caused increased dissolved organic carbon (DOC) export from many northern hemisphere forested catchments; however, findings from different locations contradict each other. Using shifts in acid deposition as a test case, we illustrate an iterative “process and pattern” approach to investigate the role of catchment characteristics in modulating the steam DOC response. We use a novel dataset that integrates regional and catchment-scale atmospheric deposition data, catchment characteristics and co-located stream Q and stream chemistry data. We use these data to investigate opportunities and limitations of a pattern-to-process approach where we explore regional patterns of reduced acid deposition, catchment characteristics and stream DOC response and specific soil processes at select locations. For pattern investigation, we quantify long-term trends of flow-adjusted DOC concentrations in stream water, along with wet deposition trends in sulfate, for USGS headwater catchments using Seasonal Kendall tests and then compare trend results to catchment attributes. Our investigation of climatic, topographic, and hydrologic catchment attributes vs. directionality of DOC trends suggests soil depth and catchment connectivity as possible modulating factors for DOC concentrations. This informed our process-to-pattern investigation, in which we experimentally simulated increased and decreased acid deposition on soil cores from catchments of contrasting long-term DOC response [Sleepers River Research Watershed (SRRW) for long-term increases in DOC and the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) for long-term decreases in DOC]. SRRW soils generally released more DOC than SSHCZO soils and losses into recovery solutions were higher. Scanning electron microscope imaging indicates a significant DOC contribution from destabilizing soil aggregates mostly from hydrologically disconnected landscape positions. Results from this work illustrate the value of an iterative process and pattern approach to understand catchment-scale response to regional disturbance and suggest opportunities for further investigations.
We present an example of using complex systems tools in combination with experiments can help investigate trends in dissolved organic carbon (DOC) concentrations and fluxes across scale from continental to the particle scale. For the statistical analyses, we used existing data from "catchment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.