BackgroundSexual size dimorphism (SSD) is related to ecology, behaviour and life history of organisms. Rensch’s rule states that SSD increases with overall body size in species where males are the larger sex, while decreasing with body size when females are larger. To test this rule, we analysed literature as well as own data on male and female body size in anurans (39 species and 17 genera). We also tested the hypothesis that SSD is largely a function of age difference between the sexes.ResultsOur data set encompassed 36 species with female-biased SSD, and three species with male-biased SSD. All considered species failed to support Rensch’s rule, also when the analyses were phylogenetically corrected. However, SSD was significantly correlated with Sexual Age Difference (SAD) across species. We also found a significant correlation between SSD contrasts and SAD contrasts.ConclusionsOur study suggests that Rensch’s rule does not accurately describe macroevolutionary patterns of SSD in anurans. That SAD can explain most of the variation in SSD among species when controlling for phylogenetic effects suggests that phylogeny is not responsible for the broad relationship between age and size across the sexes.
Rensch’s rule describes that sexual size dimorphism (SSD) increases with body size (hyperallometry) when males are larger, and decreases with body size (hypoallometry) when males are smaller. In this paper, on the basis of mean adult body size resulting from 18 populations of the common frog Rana temporaria and 24 populations of the Tibetan frog Nanorana parkeri, we tested the consistency of allometric relationships between males and females with Rensch’s rule. Our results show that the variation in degree of female-biased SSD increased with increasing mean size at intraspecific levels in two species, which is consistent with the inverse of Rensch’s rule. Furthermore, we tested the hypothesis that the degree of SSD decreased with increasing altitudes. Inconsistent with the predications of our hypothesis, we found no relationships between the degree of SSD and altitude for the two species investigated. These findings suggest that females living in adverse climates in high altitudes cannot adjust their body size as plastically as males.
Comparative studies of the relative testes size in animals show that promiscuous species have relatively larger testes than monogamous species. Sperm competition favours the evolution of larger ejaculates in many animals -they give bigger testes. In the view, we presented data on relative testis mass for 17 Chinese species including 3 polyandrous species. We analyzed relative testis mass within the Chinese data set and combining those data with published data sets on Japanese and African frogs. We found that polyandrous foam nesting species have relatively large testes, suggesting that sperm competition was an important factor affecting the evolution of relative testes size. For 4 polyandrous species testes mass is positively correlated with intensity (males/mating) but not with risk (frequency of polyandrous matings) of sperm competition.
In many taxa, the left and right testes often differ in size. The compensation hypothesis states that an increase in size of one tesüs can compensate for a reduced function in the other testis. Moreover, the expensive-tissue hypothesis predicts that an increase in investment of a metabolically costly tissue is offset by decreasing investment in the other metaboUcally costly tissues. Here we tested these two hypotheses in Carassius auratus, by analysing difference between left and right testes mass, and between brain mass and both gut length and gonad mass (testes mass in males and clutch mass in females). We found no difference between left and right testis mass and no correlations between relative testis size and body measurements. These findings suggest that the left testis cannot serve a compensatory role. Nonetheless, contrary to the predictions of the expensive-tissue hypothesis, brain mass was positively correlated with both gut length and gonad mass within each sex. This positive correlation between brain mass and other organs (gut, gonad and clutch tissues) suggests that organisms may compensate for substantial variation in investment in tissues without sacrificing other expensive tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.