Abstract. In this study, a novel self-tuning method based on fuzzy cognitive maps (FCMs) for PI controllers is proposed. The proposed FCM mechanism works in an online manner and is activated when the set-point (reference) value of the closed loop control system changes. Then, FCM tuning mechanism changes the parameters of PI controller according to systems' current and desired new reference value to improve the transient and steady state performance of the systems. The effectiveness of the proposed FCM based selftuning method is shown via simulations on a nonlinear system. The results show that the proposed self-tuning methods performances are satisfactory.
Fuzzy cognitive maps (FCM) are fuzzy signed directed graphs with feedbacks; they are simple and powerful tool for simulation and analysis of complex, nonlinear dynamic systems. However, FCM models are created by human experts mostly, and so built FCM models are subjective and building a FCM model becomes harder as number of variables increases. So in the last decade several methods are proposed providing automated generation of fuzzy cognitive maps from data. The main drawback of the proposed automated methods is their weaknesses on handling with large number of variables. The proposed method brings out a new strategy called concept by concepts approach (CbC) approach for learning of FCM. It enables the generation of large sized FCM models with a high precision and in a rapid way using the historical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.