Purpose: To evaluate the safety and ocular hypotensive efficacy of 4 trabodenoson doses administered twice daily over 14 or 28 days in subjects with ocular hypertension or primary open-angle glaucoma (POAG).Methods: In this multicenter, randomized, double-masked, placebo-controlled, dose-escalation Phase 2 study, patients received unilateral topical twice-daily trabodenoson (50, 100, or 200 mcg) or placebo for 14 days, or 500 mcg trabodenoson or placebo for 28 days. Ocular and systemic safety and tolerability were assessed by examinations, clinical and laboratory studies. Intraocular pressure (IOP) was assessed using Goldmann tonometry.Results: Trabodenoson was well tolerated; no clinically meaningful ocular or systemic side effects were identified. Trabodenoson produced a dose-dependent IOP reduction. IOP reductions in the 500 mcg group were significantly greater than placebo at all time points at Day 28. Mean IOP reductions from diurnal baseline ranged from −3.5 to −5.0 mmHg with a mean change of −4.1 mmHg in the 500 mcg group compared −1.0 to −2.5 mmHg with a mean change of −1.6 mmHg for the placebo group, and the Day 28 drop was significantly greater than at Day 14 (P = 0.0163) indicating improvement in IOP lowering with longer treatment time. IOP remained significantly reduced 24 h after the final 500 mcg dose (P = 0.048).Conclusion: Twice-daily ocular doses of trabodenoson, from 50 to 500 mcg, were well tolerated and showed a dose-related decrease in IOP that was statistically significant and clinically relevant at 500 mcg in patients with ocular hypertension or POAG.
Topical ocular delivery of trabodenoson significantly improves the clinical and histopathological signs associated with dry-eye disease in mice. This improvement appears to be related to anti-inflammatory effects from targeting adenosine signaling and represents a novel therapeutic approach to develop for the management of dry-eye disease.
Purpose: To investigate the safety, tolerability, and pharmacokinetics of trabodenoson, a highly selective adenosine mimetic targeting the adenosine A1 receptor.Methods: In Part 1, 60 healthy adult volunteers were randomized to 14 days of twice-daily topical monocular application of placebo or trabodenoson (200, 400, 800, 1,600, 2,400, or 3,200 μg). In Part 2, 10 subjects were randomized to placebo or 8 escalating doses of bilateral trabodenoson (total daily doses: 1,800–6,400 μg).Results: The incidence of treatment-related adverse events in Part 1 was similar in the trabodenoson (27.8%) and placebo (25.0%) groups. Most were mild in intensity. The most common adverse events (AEs) for trabodenoson and placebo were headache (25.0% vs. 33%, respectively) and eye pain (11.1% vs. 4.2%, respectively). Ocular AEs were infrequent (16.7% and 17.9%, respectively), were self-limited, lasted <24 h, and were typically mild in intensity. The most common ocular AE was eye pain (9.5% and 3.6%, respectively), with a single observation of ocular hyperemia (200 μg trabodenoson). Trabodenoson was rapidly absorbed [median time to maximum concentration (tmax): ∼0.08 to 0.27 h] and eliminated (t½: 0.48–2.0 h), with no evidence of drug accumulation. Systemic exposure to topical trabodenoson was dose related but not dose proportional, with a plateau effect at doses ≥2,400 mg per eye. No clinically significant treatment-related systemic AEs were observed, and increasing systemic exposure had no effect on heart rate or blood pressure.Conclusions: Ocular doses of trabodenoson up to 3,200 μg per eye were safe and well tolerated in the eye and resulted in no detectable systemic effects in healthy adult volunteers.
Metastases remain the leading cause of cancer-related death worldwide. Therefore, improving the treatment efficacy against such tumors is essential to enhance patient survival. AU-011 (belzupacap sarotalocan) is a new virus-like drug conjugate which is currently in clinical development for the treatment of small choroidal melanoma and high-risk indeterminate lesions in the eye. Upon light activation, AU-011 induces rapid necrotic cell death which is pro-inflammatory and pro-immunogenic, resulting in an anti-tumor immune response. As AU-011 is known to induce systemic anti-tumor immune responses, we investigated whether this combination therapy would also be effective against distant, untreated tumors, as a model for treating local and distant tumors by abscopal immune effects. We compared the efficacy of combining AU-011 with several different checkpoint blockade antibodies to identify optimal treatment regimens in an in vivo tumor model. We show that AU-011 induces immunogenic cell death through the release and exposure of damage-associated molecular patterns (DAMPs), resulting in the maturation of dendritic cells in vitro. Furthermore, we show that AU-011 accumulates in MC38 tumors over time and that ICI enhances the efficacy of AU-011 against established tumors in mice, resulting in complete responses for specific combinations in all treated animals bearing a single MC38 tumor. Finally, we show that AU-011 and anti-PD-L1/anti-LAG-3 antibody treatment was an optimal combination in an abscopal model, inducing complete responses in approximately 75% of animals. Our data show the feasibility of combining AU-011 with PD-L1 and LAG-3 antibodies for the treatment of primary and distant tumors.
PurposeNonarteritic anterior ischemic optic neuropathy (NAION) is the leading cause of sudden optic nerve–related vision loss currently without effective treatment. We evaluated the neuroprotective potential of ocular (topical) delivery of trabodenoson, a selective A1 receptor mimetic, in a rodent model of NAION (rNAION).MethodsDaily topical delivery of 3% trabodenoson or vehicle administered in both eyes 3 days prior to rNAION induction and for 21 days post induction. Retinal appearance and optic nerve head (ONH) edema was evaluated using spectral-domain optical coherence tomography (SD-OCT). Retinal function was evaluated before and after induction by ganzfeld electroretinography (ERG). Brn3a(+) retinal ganglion cells (RGCs) were quantified by stereology. Axonal ultrastructure was evaluated by electron microscopy.ResultsTrabodenoson-treated eyes had significantly reduced optic nerve (ON) edema compared with vehicle-treated eyes (ANOVA, P < 0.05). Electrophysiologically, there was a nonsignificant trend toward b-wave and oscillatory potential (OP) preservation in the trabodenoson-treated eyes. RGC counts were higher in trabodenoson-treated eyes compared to vehicle (74% versus 47% of the contralateral eye; two-tailed t-test; P = 0.01), as were ON axons. No overt morphologic differences in cell inflammation were observed between vehicle- and trabodenoson-treated ONHs, but trabodenoson-treated ONHs revealed increased expression of astrocyte-related neuroprotective responses.ConclusionsTrabodenoson preserves RGCs in the rodent NAION model. While previous clinical trials focused on trabodenoson's ocular antihypertensive effect, our data suggest trabodenoson's primary target may be both the retina and ONH. Selective adenosine A1 agonists may prove an appropriate neuroprotective adjunctive for ischemia-related ON diseases such as NAION and glaucoma.Translational RelevanceRGC and ON neuroprotection in ischemic neuropathies may be achievable by topical administration of A1 adenosine agonists rather than by simply relying on intraocular pressure reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.