A graph G has a finite set V of points and a set X of lines each of which joins two distinct points (called its end-points), and no two lines join the same pair of points. A graph with one point and no line is trivial. A line is incident with each of its end-points. Two points are adjacent if they are joined by a line. The degree of a point is the number of lines incident with it. The line-graph L(G) of G has X as its set of points and two elements x, y of X are adjacent in L(G) whenever the lines x and y of G have a common end-point. A walk in G is an alternating sequence v1, x1, v2, x2, …, vn of points and lines, the first and last terms being points, such that xi is the line joining vi to vi+1 for i=1, …, n-1.
Let G be a locally finite connected graph and c be a positive real-valued function defined on its edges. Let D(ξ) denote the sum of the values of c on the edges incident with a vertex ξ. A particle starts at some vertex α and performs an infinite random walkin which (i) the ξj are vertices of G, (ii), λj. is an edge joining ξj–1 to ξj (j = 1, 2, 3, …), (iii) if λ is any edge incident with ξj, thenLet υ be a set of vertices of G such that the complementary set of vertices is finite and includes α. A geometrical characterization is given of the probability (τ, say) that the particle will visit some element of υ without first returning to α. An essentially equivalent problem is obtained by regarding G as an electrical network and c(λ) as the conductance of an edge λ; the current flowing through the network from α to υ when an external agency maintains α at potential I and all elements of υ at potential 0 is found to be τD(α).A necessary and sufficient condition (of a geometrical character) for the particle to be certain to return to α. is obtained; and, as an application, a new proof is given of a conjecture of Gillis (3) regarding centrally biased random walk on an n–dimensional lattice.
A new and simple proof is given of the known theorem that, if T1, T2,… is an infinite sequence of finite trees, then there exist i and j such that i < j and Ti is homeomorphic to a subtree of Tj.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.