The PIF-pocket of AGC protein kinases participates in the physiologic mechanism of regulation by acting as a docking site for substrates and as a switch for the transduction of the conformational changes needed for activation or inhibition. We describe the effects of compounds that bind to the PIF-pocket of PDK1. In vitro, PS210 is a potent activator of PDK1, and the crystal structure of the PDK1-ATP-PS210 complex shows that PS210 stimulates the closure of the kinase domain. However, in cells, the prodrug of PS210 (PS423) acts as a substrate-selective inhibitor of PDK1, inhibiting the phosphorylation and activation of S6K, which requires docking to the PIF-pocket, but not affecting PKB/Akt. This work describes a tool to study the dynamics of PDK1 activity and a potential approach for drug discovery.
A new series of 2-aralkynyl-N(6)-methyl-MECAs 10-13 were synthesized and evaluated in radioligand binding studies and in a new Eu-GTP functional assay that provides a powerful alternative to radioisotope use. The new compounds possess high affinity and selectivity for the AA(3)R with N(6)-methyl-2-phenylethynylMECA (10) showing a subnanomolar affinity and about 100000-fold selectivity vs AA(1)R and AA(2A)R. Furthermore, the new nucleosides showed to be full agonists, the N(6)-methyl-2-(2-pyridinyl)ethynylMECA (13) being the most potent in the series.
Guanosine, released extracellularly from neurons and glial cells, plays important roles in the central nervous system, including neuroprotection. The innovative DELFIA Eu-GTP binding assay was optimized for characterization of the putative guanosine receptor binding site at rat brain membranes by using a series of novel and known guanosine derivatives. These nucleosides were prepared by modifying the purine and sugar moieties of guanosine at the 6- and 5'-positions, respectively. Results of these experiments prove that guanosine, 6-thioguanosine, and their derivatives activate a G protein-coupled receptor that is different from the well-characterized adenosine receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.