Tools have been developed to automatically integrate and test networking systems in reconfigurable hardware. These tools dynamically generate circuits for Field Programmable Gate Arrays (FPGAs). A library of hardware-accelerated modules has been developed that processes Internet Protocol (IP) packets, performs header rule matching, scans packet payloads, and implements per-flow queueing. Other functions can be added to the library as extensible modules.An integration tool was developed to enable a network administrator to specify how a customized system should examine, drop, buffer, and/or modify packets. This tool joins together modules from the library to create a composite circuit that performs multiple functions. The tool allows additional modules to be quickly added to the library and integrated into systems. The integration tool has been used to create circuits that perform Internet firewall, network intrusion detection, network intrusion prevention, and Denial of Service (DoS) attack protection functions.A test tool was developed to automatically verify that circuits created by the integration tool run properly in reconfigurable hardware. Circuits created by the integration tool are deployed into a Field-programmable Port Extender (FPX) platform. As new modules were added to the library, the test tool reconfigured the logic on the FPX, injected traffic, and monitored the resulting packets.By using hardware, not software, networking system can process millions of packets per second. Together, the integration and test tools simplify the otherwise difficult task of developing reconfigurable hardware for networking systems and testing them at Gigabit per second rates.
1A tool has been created for use in a design course to automate integration of new components into a SystemOn-Chip (SoC). Students used this tool to implement a complete SoC Internet firewall, which was prototyped and tested using a field-programmable gate array (FPGA). Common components of the framework were completed as machine problem assignments throughout the first half of the semester. During the second half of the semester, students worked in small groups to design extensible modules, which included additional packet filters, a packet encryption engine, and replacement schedulers to enhance the functionality of the SoC firewall. The integration tool was used to manage project submissions and to synthesize designs for testing and project evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.