The techniques of downward continuation and imaging invented for seismic waves can be applied to other types of waves. We show how they can be applied to electromagnetic surveys conducted with Synthetic Aperture Radar (SAR). The algorithms used closely follow those used for seismic waves. Differences are induced by alternate wavelengths, wave velocities, distances between sources and reflectors, etc. We analyse in detail a survey carried out using a satellite; difficulties arise from because the orbit of the satellite cannot be approximated by a simple straight line if the spatial resolution of the survey is high. We determine appropriate techniques for the correction of the distortion induced by the latter and we delimit the resolution of the observed data, as seen from a satellite. Finally we show examples of the application of the technique of seismic migration to satellite data that were irradiated to Earth during the short but productive life of Seasat.
Field skipping is a variable technique for reducing drastically the bit rate necessary to transmit a television signal. All fields have to be reconstructed at the receiver end, but nearest-neighbor or linear interpolations give poor performances when significant scene activity is present; therefore, some motion compensation scheme is mandatory. Although any of the algorithms proposed for motion estimation can be used for motion compensated interpolation, in this paper only the pel-recursive algorithm is considered. Past experience is briefly summarized and, based on criticism, improvements to the basic algorithm are proposed that seem to lead to an estimated motion field that is accurate enough. Multiple recursions and appropriate selection rules are proposed to counteract streaking effects of the recursive algorithm when it crosses image boundaries. The estimation of a forward and a backward motion field is used to identify image areas where occlusion effects are present. Experimental results are presented that seem to indicate that the proposed interpolation scheme has good performanc
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.