Mobile oxygen vacancies offer a substantial potential to broaden the range of optical functionalities of complex transition metal oxides due to their high mobility and the interplay with correlated electrons. Here, we report a large electro-absorptive optical variation induced by a topotactic transition via oxygen vacancy fluidic motion in calcium ferrite with large-scale uniformity. The coloration efficiency reaches ~80 cm2 C−1, which means that a 300-nm-thick layer blocks 99% of transmitted visible light by the electrical switching. By tracking the color propagation, oxygen vacancy mobility can be estimated to be 10−8 cm2 s−1 V−1 near 300°C, which is a giant value attained due to the mosaic pseudomonoclinic film stabilized on LaAlO3 substrate. First-principles calculations reveal that the defect density modulation associated with hole charge injection causes a prominent change in electron correlation, resulting in the light absorption modulation. Our findings will pave the pathway for practical topotactic electrochromic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.