Load balancing is important in solving over-load traffic problems in the network. Therefore, it has been among the first appealing applications in Software Defined Networking (SDN) networks. Numerous SDN-based load-balancing approaches have been recommended to enhance the performance of SDN networks. However, network control could be more manageable in large networks with hundreds of switches and routers. The SDN is a unique way of building, controlling, and developing networks to modify this unpleasant situation. The major concept of SDN contains logically centralizing network management in an SDN controller, which manages and observes the behaviour of the network. Numerous load-balancing approaches are known, such as Round Robin (RR), random policy, Weighted randomized policy (WRP), etc. Every load-balancing policy approach has some benefits and detriments. This paper developed an advanced load-balancing algorithm, a dynamic weighted round-robin (DWRR), and ran it on the top of the SDN controller. Then we calculate the result of our proposed load-balancing approach by comparing it with the current round-robin (RR) and weighted round-robin (WRR) approaches. Mininet tool is utilized for the investigation, and the controller utilized as the control plane is named the POX controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.