The FOXO1 transcription factor orchestrates the regulation of genes involved in the apoptotic response, cell cycle checkpoints, and cellular metabolism. FOXO1 is a putative tumor suppressor, and the expression of this gene is dysregulated in some cancers, including prostate and endometrial cancers. However, the molecular mechanism resulting in aberrant expression of human FOXO1 in cancer cells is poorly understood. We show here that FOXO1 mRNA is down-regulated in breast tumor samples as compared with normal breast tissue. Silencing of the microRNA processing enzymes, Drosha and Dicer, led to an increase in FOXO1 expression. We also identified functional and specific microRNA target sites in the FOXO1 3-untranslated region for miR-27a, miR-96, and miR-182, microRNAs that have previously been linked to oncogenic transformation. The three microRNAs, miR-27a, miR-96 and miR-182, were observed to be highly expressed in MCF-7 breast cancer cells, in which the level of FOXO1 protein is very low. Antisense inhibitors to each of these microRNAs led to a significant increase in endogenous FOXO1 expression and to a decrease in cell number in a manner that was blocked by FOXO1 siRNA. Overexpression of FOXO1 resulted in decreased cell viability because of inhibition of cell cycle traverse and induction of cell death. We have identified a novel mechanism of FOXO1 regulation, and targeting of FOXO1 by microRNAs may contribute to transformation or maintenance of an oncogenic state in breast cancer cells.The Forkhead Box O subfamily of transcription factors (FOXO) regulates a variety of important cellular processes including metabolism, cellular differentiation, apoptosis, and cell-cycle progression (1, 2). Acting as master cellular regulators, FOXO transcription factors can both activate and repress target gene expression (3).The three predominant members of the FOXO family (FOXO1, FOXO3a, and FOXO4) were first implicated in tumorigenesis based on the observation that fusion proteins resulting from chromosomal breakpoints exist in certain types of cancers (2). Recent evidence suggests that FOXO proteins function as tumor suppressors based on their role in regulating cell-cycle progression and inducing apoptosis (4).One regulatory mechanism of FOXO1 activity is through phosphorylation, primarily downstream of the insulin-stimulated phosphatidylinositol 3-kinase/AKT/protein kinase B signaling pathway, which results in nuclear exclusion (5-7). FOXO1 activity can also be regulated by acetylation (8) and ubiquitination (9, 10). In addition to insulin, FOXO1 can be down-regulated by other growth factors including estrogen (11, 12) and epidermal growth factor (13). The estrogen receptor ␣ also complexes with phosphorylated FOXO1 and mediates its export from the nucleus. These mitogens are important for the growth and survival of breast cancer cells and may contribute to maintaining low levels of FOXO1 in breast cancer cells.Although the activity of FOXO1 has been well characterized, very little is known about the regulation of FOXO1 ...
Micro-RNAs are small noncoding RNAs, which diminish the stability and/or translation of mRNAs. This study examined whether miR-206, previously shown to be elevated in estrogen receptor (ER)alpha-negative breast cancer, regulates the expression of ERalpha. Two putative miR-206 sites, (hERalpha1 and hERalpha2), were found in silico within the 3'-untranslated region of human ERalpha mRNA. Transfection of MCF-7 cells with pre-miR-206 or 2'-O-methyl antagomiR-206 specifically decreased or increased, respectively, ERalpha mRNA levels. Overexpression of pre-miR-206 reduced ERalpha and beta-actin protein levels, with no effect on ERbeta, E-cadherin, or glyceraldehyde-3-phosphate dehydrogenase. Reporter constructs containing the hERalpha1 or hERalpha2 binding sites inserted into the 3'-untranslated region of the luciferase mRNA conferred a 1.6- and 2.2-fold repression of luciferase activity, respectively, in HeLa cells. Both miR-206 sites responded accordingly to exogenous hsa-pre-miR-206 and 2'-O-methyl antagomiR-206, and both sites were rendered inactive by mutations that disrupted hybridization to the 5'-seed of miR-206. A C-->T single nucleotide polymorphism in the hERalpha1 site increased repression of luciferase activity to approximately 3.3-fold in HeLa cells. MiR-206 levels were higher in ERalpha-negative MB-MDA-231 cells than ERalpha-positive MCF-7 cells, but only the ERalpha1 site mediated significantly more repression in reporter constructs. MiR-206 expression was strongly inhibited by ERalpha agonists, but not by an ERbeta agonist or progesterone, indicating a mutually inhibitory feedback loop. These findings provide the first evidence for the posttranscriptional regulation of ERalpha by a micro-RNA in the context of breast cancer.
Argonaute (Ago) 2 is the catalytic engine of mammalian RNA interference, but little is known concerning the regulation of Ago2 by cell-signaling pathways. In this study we show that expression of Ago2, but not Ago1, Ago3, or Ago4, is elevated in estrogen receptor (ER) alpha-negative (ERalpha(-)) vs. ERalpha-positive (ERalpha+) breast cancer cell lines, and in ERalpha(-) breast tumors. In MCF-7 cells the low level of Ago2 was found to be dependent upon active ERalpha/estrogen signaling. Interestingly, the high expression of Ago2 in ERalpha(-) cells was severely blunted by inhibition of the epidermal growth factor (EGF) receptor/MAPK signaling pathway, using either a pharmacological MAPK kinase inhibitor, U0126, or a small interfering RNA directed against EGF receptor. Half-life studies using cycloheximide indicated that EGF enhanced, whereas U0126 decreased, Ago2 protein stability. Furthermore, a proteosome inhibitor, MG132, blocked Ago2 protein turnover. The functional consequences of elevated Ago2 levels were examined by stable transfection of ERalpha+ MCF-7 cells with full-length and truncated forms of Ago2. The full-length Ago2 transfectants displayed enhanced proliferation, reduced cell-cell adhesion, and increased migratory ability, as shown by proliferation, homotypic aggregation, and wound healing assays, respectively. Overexpression of full-length Ago2, but not truncated forms of Ago2 or an empty vector control, reduced the levels of E-cadherin, beta-catenin, and beta-actin, as well as enhanced endogenous miR-206 activity. These data indicate that Ago2 is regulated at both the transcriptional and posttranslational level, and also implicate Ago2 and enhanced micro-RNA activity in the tumorigenic progression of breast cancer cell lines.
Mammosphere culture has been used widely for the enrichment of mammary epithelial stem cells and breast cancer stem cells (CSCs). Epithelial-to-mesenchymal transition (EMT) also induces stem cell features in normal and transformed mammary cells. We examined whether mammosphere culture conditions per se induced EMT in the epithelial MCF-7 breast cancer cell line. MCF-7 cells were cultured as mammospheres for 5 weeks, with dispersal and reseeding at the end of each week. This mammosphere culture induced a complete EMT by 3 weeks. Return of the cells to standard adherent culture conditions in serum-supplemented media generated a cell population (called MCF-7(M) cells), which displays a stable mesenchymal and CSC-like CD(44+)/CD(24-/low) phenotype. EMT was accompanied by a stable, marked increase in EMT-associated transcription factors and mesenchymal markers, and a decrease in epithelial markers and estrogen receptor α (ERα). MCF-7(M) cells showed increased motility, proliferation and chemoresistance in vitro, and produced larger tumors in immunodeficient mice with or without estrogen supplementation. MicroRNA analysis showed suppression of miR-200c, miR-203, and miR-205; and increases in miR-222 and miR-221. Antisense hairpin RNA inhibitor targeting miR-221 resulted in re-expression of ERα in MCF-7(M) cells. This study provides the first example of mammosphere culture conditions inducing EMT and of EMT regulating microRNAs that target ERα.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.