The cure reaction pathways of a bismaleimide resin with a diamine are investigated using solid-state 15 N NMR spectroscopic techniques with specifically labeled monomers. These techniques provide clear identification of at least three different reaction pathways in the curing resin, one of which has previously been only postulated. In the homopolymerized bismaleimide resin system, maleimide ring addition has previously been shown to be the only observable reaction. When co-reacted with an amine, Michael addition of the amine to the maleimide ring has also been observed. Furthermore, a ring-opening aminolysis reaction, which has been observed in solution with specific reagents and conditions, has been suggested to occur under cure conditions. We show conclusively that this aminolysis reaction occurs to a significant extent during the cure of the neat resin and that this product can remain in the network structure even after a high-temperature postcure treatment. The existence of the amide product is demonstrated using bismaleimide resin formulations selectively labeled with 13 C and 15 N at specific sites. The 15 N chemical shifts and the 13 C-15 N scalar couplings are consistent with and confirm the amide product formation. Furthermore, under certain cure and postcure conditions, the aminolysis reaction is reversible which may significantly affect the final network structure.
The effect of an ammonium sulfide treatment on the GaAs (100) surface has been investigated by x-ray photoelectron spectroscopy. The treatment produces a slight Ga enrichment on the surface and leaves roughly 0.6 of a monolayer of sulfide which inhibits initial oxidation of the surface. The sulfide is not lost as the surface becomes oxidized but appears to remain near the GaAs/oxide interface. Furthermore, in the oxidized layer, As oxide is preferentially drawn to the surface relative to Ga oxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.