NASA is developing a new capsule-based, crewed vehicle that will land in the ocean, and the space agency desires to reduce the risk of injury from impact during these landings. Because landing impact occurs for each flight and the crew might need to perform egress tasks, current injury assessment reference values (IARV) were deemed insufficient. Because NASCAR occupant restraint systems are more effective than the systems used to determine the current IARVs and are similar to NASA's proposed restraint system, an analysis of NASCAR impacts was performed to develop new IARVs that may be more relevant to NASA's context of vehicle landing operations. Head IARVs associated with race car impacts were investigated by completing a detailed analysis of all of the 2002-2008 NASCAR impact data. Specific inclusion and exclusion criteria were used to select 4071 impacts from the 4015 recorder files provided (each file could contain multiple impact events). Of the 4071 accepted impacts, 274 were selected for numerical simulation using a custom NASCAR restraint system and Humanetics Hybrid-III 50 th percentile numerical dummy model in LS-DYNA. Injury had occurred in 32 of the 274 selected impacts, and 27 of those injuries involved the head. A majority of the head injuries were mild concussions with or without brief loss of consciousness. The 242 non-injury impacts were randomly selected and representative of the range of crash dynamics present in the total set of 4071 impacts. Head dynamics data (head translational acceleration, translational change in velocity, rotational acceleration, rotational velocity, HIC-15, HIC-36, and the Head 3ms clip) were filtered according to SAE J211 specifications and then transformed to a log scale. The probability of head injury was estimated using a separate logistic regression analysis for each log-transformed predictor candidate. Using the log transformation constrains the estimated probability of injury to become negligible as IARVs approach zero. For the parameters head translational acceleration, head translational velocity change, head rotational acceleration, HIC-15, and HIC-36, conservative values (in the lower 95% confidence interval) that gave rise to a 5% risk of any injury occurring were estimated as 40.0 G, 7.9 m/s, 2200 rad/s 2 , 98.4, and 77.4 respectively. Because NASA is interested in the consequence of any particular injury on the ability of the crew to perform egress tasks, the head injuries that occurred in the NASCAR dataset were classified according to a NASA-developed scale (Classes I -III) for operationally relevant injuries, which classifies injuries on the basis of their operational significance. Additional analysis of the data was performed to determine the probability of each injury class occurring, and this was estimated using an ordered probit model. For head translational acceleration, head translational velocity change, head rotational acceleration, head rotational velocity, HIC-36, and head 3ms clip, conservative values of IARVs that produced a 5% risk of Class...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.