Abstract-Since the introduction of independent contact regions in order to compensate for shortcomings in the positioning accuracy of robotic hands, alternative methods for their generation have been proposed. Due to the fact that (in general) such regions are not unique, the computation methods used usually reflect the envisioned application and/or underlying assumptions made. This paper introduces a parallelizable algorithm for the efficient computation of independent contact regions, under the assumption that a user input in the form of initial guess for the grasping points is readily available. The proposed approach works on discretized 3D-objects with any number of contacts and can be used with any of the following models: frictionless point contact, point contact with friction and soft finger contact. An example of the computation of independent contact regions comprising a non-trivial task wrench space is given.
We present a method for automatic grasp generation based on object shape primitives in a Programming by Demonstration framework. The system first recognizes the grasp performed by a demonstrator as well as the object it is applied on and then generates a suitable grasping strategy on the robot. We start by presenting how to model and learn grasps and map them to robot hands. We continue by performing dynamic simulation of the grasp execution with a focus on grasping objects whose pose is not perfectly known.
The focus of the paper is the learning of grasp primitives for a five-fingered anthropomorphic robotic hand via teaching-by-demonstration and fuzzy modeling. In this approach, a number of basic grasps is demonstrated by a human operator wearing a data glove which continuously captures the hand pose. The resulting fingertip trajectories and joint angles are clustered and modeled in time and space so that the motions of the fingers forming a particular grasp are modeled in a most effective and compact way. Classification and learning are based on fuzzy clustering and Takagi Sugeno (TS) modeling. The presented method allows to learn, imitate and recognize the motion sequences forming specific grasps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.