We consider the numerical approximation of acoustic wave propagation problems by mixed BDM k+1 -P k finite elements on unstructured meshes. Optimal convergence of the discrete velocity and super-convergence of the pressure by one order are established. Based on these results, we propose a post-processing strategy that allows us to construct an improved pressure approximation from the numerical solution. Corresponding results are well-known for mixed finite element approximations of elliptic problems and we extend these analyses here to the hyperbolic problem under consideration. We also consider the subsequent time discretization by the Crank-Nicolson method and show that the analysis and the post-processing strategy can be generalized to the fully discrete schemes. Our proofs do not rely on duality arguments or inverse inequalities and the results therefore apply also for non-convex domains and non-uniform meshes.
A novel mass-lumping strategy for a mixed finite element approximation of Maxwell's equations is proposed. On structured orthogonal grids the resulting method coincides with the spatial discretization of the Yee scheme. The proposed method, however, generalizes naturally to unstructured grids and anisotropic materials and thus yields a variational extension of the Yee scheme for these situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.