To investigate the feasibility of using a deep learning-based approach to detect an anterior cruciate ligament (ACL) tear within the knee joint at MRI by using arthroscopy as the reference standard. Materials and Methods: A fully automated deep learning-based diagnosis system was developed by using two deep convolutional neural networks (CNNs) to isolate the ACL on MR images followed by a classification CNN to detect structural abnormalities within the isolated ligament. With institutional review board approval, sagittal proton density-weighted and fat-suppressed T2-weighted fast spinecho MR images of the knee in 175 subjects with a full-thickness ACL tear (98 male subjects and 77 female subjects; average age, 27.5 years) and 175 subjects with an intact ACL (100 male subjects and 75 female subjects; average age, 39.4 years) were retrospectively analyzed by using the deep learning approach. Sensitivity and specificity of the ACL tear detection system and five clinical radiologists for detecting an ACL tear were determined by using arthroscopic results as the reference standard. Receiver operating characteristic (ROC) analysis and two-sided exact binomial tests were used to further assess diagnostic performance. Results: The sensitivity and specificity of the ACL tear detection system at the optimal threshold were 0.96 and 0.96, respectively. In comparison, the sensitivity of the clinical radiologists ranged between 0.96 and 0.98, while the specificity ranged between 0.90 and 0.98. There was no statistically significant difference in diagnostic performance between the ACL tear detection system and clinical radiologists at P < .05. The area under the ROC curve for the ACL tear detection system was 0.98, indicating high overall diagnostic accuracy. Conclusion: There was no significant difference between the diagnostic performance of the ACL tear detection system and clinical radiologists for determining the presence or absence of an ACL tear at MRI.
Objective: To develop and evaluate deep learning (DL) risk assessment models for predicting the progression of radiographic medial joint space loss using baseline knee X-rays. Methods: Knees from the Osteoarthritis Initiative without and with progression of radiographic joint space loss (defined as ! 0.7 mm decrease in medial joint space width measurement between baseline and 48-month follow-up X-rays) were randomly stratified into training (1400 knees) and hold-out testing (400 knees) datasets. A DL network was trained to predict the progression of radiographic joint space loss using the baseline knee X-rays. An artificial neural network was used to develop a traditional model for predicting progression utilizing demographic and radiographic risk factors. A combined joint training model was developed using a DL network to extract information from baseline knee X-rays as a feature vector, which was further concatenated with the risk factor data vector. Area under the curve (AUC) analysis was performed using the hold-out test dataset to evaluate model performance.Results: The traditional model had an AUC of 0.660 (61.5% sensitivity and 64.0% specificity) for predicting progression. The DL model had an AUC of 0.799 (78.0% sensitivity and 75.5% specificity), which was significantly higher (P < 0.001) than the traditional model. The combined model had an AUC of 0.863 (80.5% sensitivity and specificity), which was significantly higher than the DL (P ¼ 0.015) and traditional (P < 0.001) models. Conclusion: DL models using baseline knee X-rays had higher diagnostic performance for predicting the progression of radiographic joint space loss than the traditional model using demographic and radiographic risk factors.
Materials exhibiting negative differential resistance have important applications in technologies involving microwave generation, which range from motion sensing to radio astronomy. Despite their usefulness, there has been few physical mechanisms giving rise to materials with such properties, i.e. GaAs employed in the Gunn diode. In this work, we show that negative differential resistance also generically arise in Dirac ring systems, an example of which has been experimentally observed in the surface states of Topological Insulators. This novel realization of negative differential resistance is based on a completely different physical mechanism from that of the Gunn effect, relying on the characteristic non-monotonicity of the response curve that remains robust in the presence of nonzero temperature, chemical potential, mass gap and impurity scattering. As such, it opens up new possibilities for engineering applications, such as frequency upconversion devices which are highly sought for terahertz signal generation. Our results may be tested with thin films of Bi2Se3 Topological Insulators, and are expected to hold qualitatively even in the absence of a strictly linear Dirac dispersion, as will be the case in more generic samples of Bi2Se3 and other materials with topologically nontrivial Fermi sea regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.