Traumatic brain injury (TBI) is a critical public health and socio-economic problem throughout the world. Reliable quantification of the burden caused by TBI is difficult owing to inadequate standardization and incomplete capture of data on the incidence and outcome of brain injury, with variability in the definition of TBI being partly to blame. Reports show changes in epidemiological patterns of TBI: the median age of individuals who experience TBI is increasing, and falls have now surpassed road traffic incidents as the leading cause of this injury. Despite claims to the contrary, no clear decrease in TBI-related mortality or improvement of overall outcome has been observed over the past two decades. In this Perspectives article, we discuss the strengths and limitations of epidemiological studies, address the variability in its definition, and highlight changing epidemiological patterns. Taken together, these analyses identify a great need for standardized epidemiological monitoring in TBI.
BACKGROUNDThe value of administering intravenous alteplase before endovascular treatment (EVT) for acute ischemic stroke has not been studied extensively, particularly in non-Asian populations. METHODSWe performed an open-label, multicenter, randomized trial in Europe involving patients with stroke who presented directly to a hospital that was capable of providing EVT and who were eligible for intravenous alteplase and EVT. Patients were randomly assigned in a 1:1 ratio to receive EVT alone or intravenous alteplase followed by EVT (the standard of care). The primary end point was functional outcome on the modified Rankin scale (range, 0 [no disability] to 6 [death]) at 90 days. We assessed the superiority of EVT alone over alteplase plus EVT, as well as noninferiority by a margin of 0.8 for the lower boundary of the 95% confidence interval for the odds ratio of the two trial groups. Death from any cause and symptomatic intracerebral hemorrhage were the main safety end points. RESULTSThe analysis included 539 patients. The median score on the modified Rankin scale at 90 days was 3 (interquartile range, 2 to 5) with EVT alone and 2 (interquartile range, 2 to 5) with alteplase plus EVT. The adjusted common odds ratio was 0.84 (95% confidence interval [CI], 0.62 to 1.15; P = 0.28), which showed neither superiority nor noninferiority of EVT alone. Mortality was 20.5% with EVT alone and 15.8% with alteplase plus EVT (adjusted odds ratio, 1.39; 95% CI, 0.84 to 2.30). Symptomatic intracerebral hemorrhage occurred in 5.9% and 5.3% of the patients in the respective groups (adjusted odds ratio, 1.30; 95% CI, 0.60 to 2.81). CONCLUSIONSIn a randomized trial involving European patients, EVT alone was neither superior nor noninferior to intravenous alteplase followed by EVT with regard to disability outcome at 90 days after stroke. The incidence of symptomatic intracerebral hemorrhage was similar in the two groups. (Funded by the Collaboration for New Treatments of Acute Stroke consortium and others; MR CLEAN-NO IV ISRCTN number, ISRCTN80619088.
Summary:In this article, we review past and current experience in clinical trials of traumatic brain injuries (TBIs), we discuss limitations and challenges, and we summarize current directions. The focus is on severe and moderate TBIs. A systematic literature search of the years from 1980 to 2009 revealed 27 large phase III trials in TBI; we were aware of a further 6 unpublished trials. Analysis of these 33 trials yielded interesting observations:• There was a peak incidence of trial initiations that occurred in the mid-1990s with a sharp decline during the period from 2000 to 2004.• Most trials that reported a significant treatment effect were studies on a therapeutic strategy (e.g., decompressive craniectomy, hypothermia), and these were single-center studies.• Increasingly, studies have been shifting toward the Far East.The currently existing trial registries permit insight into ongoing or recently conducted trials. Compared with the past decade, the number of studies on neuroprotective agents taken forward into efficacy-oriented studies is low. In contrast, the number of studies on therapeutic strategies appears to be increasing again.The disappointing results in trials on neuroprotective agents in TBI have led to a critical reappraisal of clinical trial methodology. This has resulted in recommendations for preclinical workup and has triggered extensive analysis on approaches to improve the design and analysis of clinical trials in TBI. An interagency initiative toward standardization on selection and coding of data elements across the broad spectrum of TBI is ongoing, and will facilitate comparison of research findings across studies and encourage high-quality meta-analysis of individual patient data in the future.
IntroductionIn clinical trials, ordinal outcome measures are often dichotomized into two categories. In traumatic brain injury (TBI) the 5-point Glasgow outcome scale (GOS) is collapsed into unfavourable versus favourable outcome. Simulation studies have shown that exploiting the ordinal nature of the GOS increases chances of detecting treatment effects. The objective of this study is to quantify the benefits of ordinal analysis in the real-life situation of a large TBI trial.MethodsWe used data from the CRASH trial that investigated the efficacy of corticosteroids in TBI patients (n = 9,554). We applied two techniques for ordinal analysis: proportional odds analysis and the sliding dichotomy approach, where the GOS is dichotomized at different cut-offs according to baseline prognostic risk. These approaches were compared to dichotomous analysis. The information density in each analysis was indicated by a Wald statistic. All analyses were adjusted for baseline characteristics.ResultsDichotomous analysis of the six-month GOS showed a non-significant treatment effect (OR = 1.09, 95% CI 0.98 to 1.21, P = 0.096). Ordinal analysis with proportional odds regression or sliding dichotomy showed highly statistically significant treatment effects (OR 1.15, 95% CI 1.06 to 1.25, P = 0.0007 and 1.19, 95% CI 1.08 to 1.30, P = 0.0002), with 2.05-fold and 2.56-fold higher information density compared to the dichotomous approach respectively.ConclusionsAnalysis of the CRASH trial data confirmed that ordinal analysis of outcome substantially increases statistical power. We expect these results to hold for other fields of critical care medicine that use ordinal outcome measures and recommend that future trials adopt ordinal analyses. This will permit detection of smaller treatment effects.
Objective To improve the selection of patients with acute ischaemic stroke for intra-arterial treatment using a clinical decision tool to predict individual treatment benefit. Design Multivariable regression modelling with data from two randomised controlled clinical trials. Setting 16 hospitals in the Netherlands (derivation cohort) and 58 hospitals in the United States, Canada, Australia, and Europe (validation cohort). Participants 500 patients from the Multicenter Randomised Clinical Trial of Endovascular Treatment for Acute Ischaemic Stroke in the Netherlands trial (derivation cohort) and 260 patients with intracranial occlusion from the Interventional Management of Stroke III trial (validation cohort). Main outcome measures The primary outcome was the modified Rankin Scale (mRS) score at 90 days after stroke. We constructed an ordinal logistic regression model to predict outcome and treatment benefit, defined as the difference between the predicted probability of good functional outcome (mRS score 0-2) with and without intra-arterial treatment. Results 11 baseline clinical and radiological characteristics were included in the model. The externally validated C statistic was 0.69 (95% confidence interval 0.64 to 0.73) for the ordinal model and 0.73 (0.67 to 0.79) for the prediction of good functional outcome, indicating moderate discriminative ability. The mean predicted treatment benefit varied between patients in the combined derivation and validation cohort from −2.3% to 24.3%. There was benefit of intra-arterial treatment predicted for some individual patients from groups in which no treatment effect was found in previous subgroup analyses, such as those with no or poor collaterals. Conclusion The proposed clinical decision tool combines multiple baseline clinical and radiological characteristics and shows large variations in treatment benefit between patients. The tool is clinically useful as it aids in distinguishing between individual patients who may experience benefit from intra-arterial treatment for acute ischaemic stroke and those who will not. Trial registration clinicaltrials.gov NCT00359424 (IMS III) and isrctn.com ISRCTN10888758 (MR CLEAN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.