The in vitro labeling of therapeutic cells with nanoparticles (NPs) is becoming more and more common, but concerns about the possible effects of the NPs on the cultured cells are also increasing. In the present work, we evaluate the effects of poly(methacrylic acid)-coated 4 nm diameter Au NPs on a variety of sensitive and therapeutically interesting cell types (C17.2 neural progenitor cells, human umbilical vein endothelial cells, and PC12 rat pheochromocytoma cells) using a multiparametric approach. Using various NP concentrations and incubation times, we performed a stepwise analysis of the NP effects on cell viability, reactive oxygen species, cell morphology, cytoskeleton architecture, and cell functionality. The data show that higher NP concentrations (200 nM) reduce cell viability mostly through induction of reactive oxygen species, which was significantly induced at concentrations of 50 nM Au NPs or higher. At these concentrations, both actin and tubulin cytoskeleton were deformed and resulted in reduced cell proliferation and cellular differentiation. In terms of cell functionality, the NPs significantly impeded neurite outgrowth of PC12 cells up to 20 nM concentrations. At 10 nM, no significant effects on any cellular parameter could be observed. These data highlight the importance of using multiple assays to cover the broad spectrum of cell-NP interactions and to determine safe NP concentrations and put forward the described protocol as a possible template for future cell-NP interaction studies under comparable and standardized conditions.
The scope of this tutorial review is (i) to provide an overview on ICP-MS based techniques for the analysis of ENPs and natural nanoparticles/colloids by (a) “stand alone” ICP-MS and (b) hyphenated techniques; (ii) highlighting the benefits and pitfalls of each technique as well as providing practical advice regarding method development; (iii) illustrating the possibilities and limitations of each technique by practical applications from the recent literature.
Validated and easily applicable analytical tools are required to develop and implement regulatory frameworks and an appropriate risk assessment for engineered nanoparticles (ENPs). Concerning metal-based ENPs, two main aspects are the quantification of the absolute mass concentration and of the “dissolved” fraction in, e.g., (eco)toxicity and environmental studies. To provide information on preparative aspects and on potential uncertainties, preferably simple off-line methods were compared to determine (1) the total concentration of suspensions of five metal-based ENP materials (Ag, TiO2, CeO2, ZnO, and Au; two sizes), and (2) six methods to quantify the “dissolved” fraction of an Ag ENP suspension. Focusing on inductively coupled plasma–mass spectrometry, the total concentration of the ENP suspensions was determined by direct measurement, after acidification and after microwave-assisted digestion. Except for Au 10 nm, the total concentrations determined by direct measurements were clearly lower than those measured after digestion (between 61.1 % for Au 200 nm and 93.7 % for ZnO). In general, acidified suspensions delivered better recoveries from 89.3 % (ZnO) to 99.3 % (Ag). For the quantification of dissolved fractions two filtration methods (ultrafiltration and tangential flow filtration), centrifugation and ion selective electrode were mainly appropriate with certain limitations, while dialysis and cloud point extraction cannot be recommended. With respect to precision, time consumption, applicability, as well as to economic demands, ultrafiltration in combination with microwave digestion was identified as best practice.FigureA Multi-method approach to identify best practice for ICP-MS based off-line characterization of ENP suspensions.Electronic supplementary materialThe online version of this article (doi:10.1007/s00216-013-7480-2) contains supplementary material, which is available to authorized users.
The behavior of Gd chelates used in magnetic resonance imaging (MRI) within the process of sewage treatment is widely unknown. Due to the varying toxicity of the particular Gd species [J. M. Idee et al. Fundam. Clin. Pharmacol. 2006, 20, 563-576], it is important to not only investigate total Gd concentrations, but the Gd species as well. This work describes a novel method for speciation analysis of the most important gadolinium chelates in wastewaters. This novel approach consists of coupling hydrophilic interaction chromatography (HILIC) with inductively coupled plasma mass spectrometry (ICP-MS). HILIC/ICP-MS exhibits high separation efficiency for the simultaneous separation of the five predominantly applied MRI contrast agents and the required selectivity and sensitivity for trace determination in wastewater samples. For the first time, the distribution of particular Gd chelate complexes was determined in hospital effluent, municipal sewage, and wastewater treatment plant (WWTP) samples. The data were compared with the total concentration of Gd as determined by ICP-MS. The active compounds of Multihance, Dotarem, and Gadovist were identified in local WWTP samples. Interestingly, the macrocyclic, nonionic compound Gd-BT-DO3A (Gadovist) was found to be the most abundant Gd complex in all investigated samples. This is in contrast to prevalent assumptions that linear ionic Gd chelates such as Gd-DTPA (Magnevist) would be the predominant species [G. Morteani et al. Environ. Geochem. Health 2006, 28, 257-264 and M. Bau and P. Dulski, Earth Planet. Sci. Lett. 1996, 143, 245-255]. Although contrast agent concentrations tend to be reduced during wastewater treatment, Gd-BT-DO3A was still found in WWTP effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.