Four distinct meteorological regimes in the Amazon basin have been examined to distinguish the contributions from boundary layer aerosol and convective available potential energy (CAPE) to continental cloud structure and electrification. The lack of distinction in the electrical parameters (peak flash rate, lightning yield per unit rainfall) between aerosol‐rich October and aerosol‐poor November in the premonsoon regime casts doubt on a primary role for the aerosol in enhancing cloud electrification. Evidence for a substantial role for the aerosol in suppressing warm rain coalescence is identified in the most highly polluted period in early October. The electrical activity in this stage is qualitatively peculiar. During the easterly and westerly wind regimes of the wet season, the lightning yield per unit of rainfall is positively correlated with the aerosol concentration, but the electrical parameters are also correlated with CAPE, with a similar degree of scatter. Here cause and effect are difficult to establish with available observations. This ambiguity extends to the “green ocean” westerly regime, a distinctly maritime regime over a major continent with minimum aerosol concentration, minimum CAPE, and little if any lightning.
In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaing with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J kg-1), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10-4s-1.This combination of characteristics promoted convective systems that featured a relatively large fraction of stratiform rainfall and weak convection nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon convective regime. In contrast, easterly regime convective systems were more strongly electrified and featured larger convective rain rates and reduced stratiform rainfall fraction.
[1] Evaluation of concentrations predicted by air quality models is needed to ensure that model results are compatible with observations. In this study aerosol properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations are compared with routine data from NASA satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Sun-synchronous Terra satellite, NASA's ground-based Aerosol Robotic Network (AERONET), and the ground-based Interagency Monitoring of Protected Visual Environment (IMPROVE) network. The motivation for this analysis is to determine how best to use these parameters in evaluating model-predicted PM 2.5 concentrations. CMAQ surface extinction estimates due to scattering at 550 nm wavelength are compared with the IMPROVE nephelometer data obtained from 25 sites within the United States. It is found that model-predicted surface extinctions bear high correlations with nephelometer measured data. Sulfate fractional aerosol optical depth (AOD) is found to dominate in the northeastern part of the United States; hence ground-based measurement of sulfate concentrations have been compared with time series of columnar AOD as observed by the MODIS instrument and also with the CMAQ-predicted tropospheric column values obtained during the JuneAugust period of 2001. CMAQ surface extinctions are found to be relatively higher than the IMPROVE nephelometer observations; however, there is a good agreement between CMAQ AOD trends and AERONET and MODIS data, obtained at the seven AERONET sites located in the eastern United States. CMAQ is also found to capture the day-to-day variability in the spatial AOD patterns. Monthly average satellite AOD estimates are found to be higher than the AOD data obtained using the CMAQ-predicted aerosol concentrations. Seasonal variation of satellite-measured aerosol intensive property ''Angstrom exponent'' (a gross indicator of the aerosol size distribution) is presented for four selected sites: one each in the eastern and central parts, and two in the western part of the continental United States. Variability of Angstrom exponent at these four selected sites is analyzed in conjunction with the variation of summertime AOD (observed and modeled), mass concentration (observed and modeled) and modeled SO 4 average concentrations during the summer (June-August) period of the year 2001. Annual time series of Angstrom exponent data at the four selected sites show a large east-west variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.