The inflammatory cytokines interleukin-1 and tumor necrosis factor-␣ (TNF-␣) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects of these cytokines on neuronal death caused by exposure of mouse organotypic hippocampal slice cultures to toxic concentrations of AMPA. Either potentiation of excitotoxicity or neuroprotection was observed, depending on the concentration of the cytokines and the timing of exposure. A relatively high concentration of mouse recombinant TNF-␣ (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-␣ to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol. By using TNF-␣ receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-␣ involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed by macrophage antigen-1 and bromodeoxyuridine immunohistochemistry, suggesting a functional recruitment of cytokineproducing cells at sites of neurodegeneration. Together, these findings are relevant for understanding the role of proinflammatory cytokines and microglia activation in acute and chronic excitotoxic conditions.
Glutamate and NPY have been implicated in hippocampal neuropathology in temporal lobe epilepsy. Thus, we investigated the involvement of NPY receptors in mediating neuroprotection against excitotoxic insults in organotypic cultures of rat hippocampal slices. Exposure of hippocampal slice cultures to 2 µM AMPA (α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate) induced neuronal degeneration, monitored by propidium iodide uptake, of granule cells and CA1 pyramidal cells. For AMPA, whereas only the activation of Y2 receptors was effective for CA1 pyramidal cells. When the slice cultures were exposed to 6 µM kainate, the CA3 pyramidal cells displayed significant degeneration, and in this case the activation of Y1, Y2, and Y5 receptors was neuroprotective. For the kainic acid-induced degeneration of CA1 pyramidal cells, it was again found that only the Y2 receptor activation was effective. Based on the present findings, it was concluded that Y1, Y2, and Y5 receptors effectively can modify glutamate receptor-mediated neurodegeneration in the hippocampus.Key words: NPY • AMPA • kainate • neuroprotection • neurodegeneration N europeptide Y (NPY) is a 36-amino-acid peptide abundantly distributed in the brain and associated with a number of physiological and pathological conditions (1). This peptide has been shown to modulate anxiety, pain, memory, eating behavior, and many other functions in the central, as well as in the peripheral, nervous systems (1, 2). Another significant role of NPY that has become evident during the past decade is regulation of seizure activity (3).At least five NPY receptor subtypes have been identified based on different pharmacological profiles: Y1, Y2, Y4, Y5, and y6 (4). A putative Y3 receptor has also been identified (5 In the hippocampus, Y1 and Y2 receptors are highly expressed (11). Receptors of the Y1 subtype are preferentially located in granule cells of the dentate molecular layer, whereas Y2 receptors are expressed at high concentrations in the mossy fiber and Schaffer collateral fields (12). Moreover, Y5 receptor binding sites can also be found in the strata oriens and radiatum of the CA3 and CA1 areas (13,14). Presently, there is evidence for the involvement of these three NPY receptors subtypes in epilepsy. The activation of Y2 receptors suppresses seizure activity in hippocampal slices in vitro (15) and in vivo models (3). In human temporal lobe epilepsy, significant alterations in Y1 and Y2 receptor binding were observed (16). NPY Y5 receptors also seem to be involved in the suppression of seizure activity (17,18). In different animal models of epilepsy, NPY is highly expressed by granule cells and mossy fibers of the hippocampus (19,20), whereas in normal conditions only GABAergic interneurons express this peptide. Furthermore, knockout mice lacking the NPY gene develop spontaneous seizures and are more susceptible to pentylenetetrazol and kainic acid-induced motor seizures, which are inhibited by intracerebral infusion of NPY (21). Thus, these evidences suggest that N...
Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation of the induced neurodegeneration, we have developed standardized protocols, including--a) densitometric measurements of the cellular uptake of propidium iodide (PI), --b) histological staining by Flouro-Jade, --c) lactate dehydrogenase (LDH) release to the culture medium, --d) immunostaining for microtubulin-associated protein 2, and --e) general and specific neuronal and glial cell stains. The results show good correlation between the different markers, and are in accordance with results obtained in vivo. Examples presented in this review will focus on the use of PI uptake to monitor the excitotoxic effects of --a) KA and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use for studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection.
The neuroprotective effect of neuropeptide Y (NPY) receptor activation was investigated in organotypic mouse hippocampal slice cultures exposed to the glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Exposure of 2-week-old slice cultures, derived from 7-day-old C57BL/6 mice, to 8 microm AMPA, for 24 h, induced degeneration of CA1 and CA3 pyramidal cells, as measured by cellular uptake of propidium iodide (PI). A significant neuroprotection, with a reduction of PI uptake in CA1 and CA3 pyramidal cell layers, was observed after incubation with a Y(2) receptor agonist [NPY(13-36), 300 nm]. This effect was sensitive to the presence of the selective Y(2) receptor antagonist (BIIE0246, 1 microm), but was not affected by addition of TrkB-Fc or by a neutralizing antibody against brain-derived neurotrophic factor (BDNF). Moreover, addition of a Y(1) receptor antagonist (BIBP3226, 1 microm) or a NPY-neutralizing antibody helped to disclose a neuroprotective role of endogenous NPY in CA1 region. Cultures exposed to 8 microm AMPA for 24 h, displayed, as measured by an enzyme-linked immunosorbent assay, a significant increase in BDNF. In such cultures there was an up-regulation of neuronal TrkB immunoreactivity, as well as the presence of BDNF-immunoreactive microglial cells at sites of injury. Thus, an increase of AMPA-receptor mediated neurodegeneration, in the mouse hippocampus, was prevented by neuroprotective pathways activated by NPY receptors (Y(1) and Y(2)), which can be affected by BDNF released by microglia and neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.