In this study, we experimentally evaluate the ion transportation through a cone guide target, which accelerates ions up to MeV energies via target normal sheath acceleration, and transports them onto the position of imploding fuel in the fast ignition scenario of nuclear fusion. We measured the electric and magnetic fields (EM-fields) induced by return current streaming along the cone wall by proton radiography, and we report that the EM-fields are predominantly induced within a temporal window up to 30 ps after the laser injection. The magnitude of the electric field is maximized around 13 ps, reaching
$4.0\times 10^{10} \mathrm {V}\ \mathrm {m}^{-1}$
, when the magnetic field is below 200 T. The present scheme provides insights on the EM-fields evaluation in the time region that is difficult to treat with simulations due to the computing resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.