In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.
The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.
Layer-by-layer (LbL) assembly is a self-assembly technique used to develop multilayer films based on complementary interactions between film components. These multilayer films have had a significant impact on the fields of cellular and tissue engineering. The aim of cellular engineering is to understand and control cell behavior, which not only impacts applications in regenerative medicine but also other biomedical therapies that rely on cell interactions with biomaterials, including treatments for autoimmune disorders and cancer. Tissue engineering approaches to tissue repair and regeneration utilize three-dimensional biomaterial scaffolds that interact favorably with cells. Cellular engineering studies can better inform the design of these scaffolds. The ease of tuning the chemical and mechanical properties of LbL films, the ability to coat a variety of medically relevant substrates (including cell culture surfaces and scaffolds), and the wide range of species that can be incorporated into these films (ranging from proteins to small molecules) have led to the successful use of LbL assembly for a variety of cellular and tissue engineering applications. The films used in these biomedical applications can be divided into those that release therapeutics, often with controlled stimuli-responsive release behavior, and those that act without releasing these agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.