We report on precise measurements of absolute nonlinear ionization probabilities obtained by exposing optically trapped ultracold rubidium atoms to the field of an ultrashort laser pulse in the intensity range of 1 × 10 11 to 4 × 10 13 W/cm 2 . The experimental data are in perfect agreement with ab-initio theory, based on solving the time-dependent Schrödinger equation without any free parameters. Ultracold targets allow to retrieve absolute probabilities since ionized atoms become apparent as a local vacancy imprinted into the target density, which is recorded simultaneously. We study the strong-field response of 87 Rb atoms at two different wavelengths representing non-resonant and resonant processes in the demanding regime where the Keldysh parameter is close to unity.
Elastic scattering cross sections are measured for lithium atoms colliding
with rare gas atoms and SF6 molecules at tunable relative velocities down to
~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam
with a magneto-optic trap that provides an ultracold cloud of lithium atoms as
a scattering target. Comparison with theory reveals the quantum nature of the
collision dynamics in the studied regime, including both rainbows as well as
orbiting resonances
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.