Abstract. The goal of this paper is to provide linear or quasi-linear algorithms for producing some of the various trees used in mathemetical morphology, in particular the trees corresponding to hierarchies of watershed cuts and hierarchies of constrained connectivity. A specific binary tree, corresponding to an ordered version of the edges of the minimum spanning tree, is the key structure in this study, and is computed thanks to variations around Kruskal algorithm for minimum spanning tree.
Abstract. In edge-weighted graphs, we provide a unified presentation of a family of popular morphological hierarchies such as component trees, quasi flat zones, binary partition trees, and hierarchical watersheds. For any hierarchy of this family, we show if (and how) it can be obtained from any other element of the family. In this sense, the main contribution of this paper is the study of all constructive links between these hierarchies.
The morphological Hit-or-Miss Transform (HMT) is a powerful tool for digital image analysis. Its recent extensions to grey level images have proven its ability to solve various template matching problems. In this paper we explore the capacity of various existing approaches to work in very noisy environments and discuss the generic methods used to improve their robustness to noise. We also propose a new formulation for a fuzzy morphological HMT which has been especially designed to deal with very noisy images. Our approach is validated through a pattern matching problem in astronomical images that consists of detecting very faint objects: low surface brightness galaxies. Despite their influence on the galactic evolution model, these objects remain mostly misunderstood by the astronomers. Due to their low signal to noise ratio, there is no automatic and reliable detection method yet. In this paper we introduce such a method based on the proposed hit-or-miss operator. The complete process is described starting from the building of a set of patterns until the reconstruction of a suitable map of detected objects. Implementation, running cost and optimisations are discussed. Outcomes have been examined by astronomers and compared to previous works. We have observed promising results in this difficult context for which Mathemat-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.