Aim: Text classification is a method to classify the features from language translation in speech recognition from English to Telugu using a recurrent neural network- long short term memory (RNN-LSTM) comparison with convolutional neural network (CNN). Materials and Methods: Accuracy and precision are performed with dataset alexa and english-telugu of size 8166 sentences. Classification of language translation is performed by the recurrent neural network where a number of the samples (N=62) and convolutional neural network were a number of samples (N=62) techniques, the algorithm RNN implies speech recognition that can be compared with convolutional is the second technique. Results and Discussion: RNN-LSTM from the dataset speech recognition, feature Telugu_id produce accuracy 93% and precision 68.04% which can be comparatively higher than CNN accuracy 66.11%, precision 61.90%. It shows a statistical significance as 0.007 from Independent Sample T-test. Conclusion: The RNN-LSTM performs better in finding accuracy and precision when compared to CNN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.