This paper presents an experimental investigation of microstructure and piezoresistive properties of phosphorus-doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films. The phosphorus-doped nc-Si:H thin films (5% doping ratio of PH3 to SiH4) were deposited by plasma enhanced chemical vapor deposition (PECVD) technique. The microstructure and surface morphology of the deposited thin films was characterized and analyzed with Raman spectroscopy and atomic force microscopy (AFM), respectively. The piezoresistive properties of the deposited thin films were investigated with a designed four-point bending-based evaluation system. In addition, the influence of temperature on the piezoresistive properties of these thin films was evaluated with the temperature coefficient of resistance (TCR) measurements from room temperature up to 80°C. The experimental results show that phosphorus-doped nc-Si:H thin films prepared by PECVD technique are a two-phase material that constitutes of nanocrystalline silicon and amorphous silicon, and they present a granular structure composed of homogeneously scattered nanoclusters formed by nanocrystalline silicon grains (6nm). Moreover, phosphorus-doped nc-Si:H thin films exhibit negative GF at room temperature and show good thermal stability from room temperature up to 80°C, and the value of GF and TCR is about-31 and-509ppm/°C, respectively. These features could make phosphorus-doped nc-Si:H thin films act as a promising material for piezoresistive-based MEMS sensor.
Inspection and measurement for the sheet resistance and resistivity play a pivotal role in the semiconductor industry. In this study, a high-accuracy measurement system for sheet resistance of thin films was designed based on dual-measurement with four-point probe method. The measurement system was composed of a special switching circuit, a digital output module, Keithley 2400 SourceMeter, and a computer running LabVIEW. The special switching circuit designed based on the multiplexer played an important role in current probes and voltage probes automatic switching under the control of virtual instrumentation software LabVIEW and National instruments digital output module hardware NI 9401. Keithley 2400 SourceMeter controlled by LabVIEW was used for two-times high-precision voltage measurement. Van der Pauw correction factor were calculated based on the results of the two-times voltage measurement. Then the sheet resistance of thin films was calculated by LabVIEW softwares powerful computing. The experimental results show that the designed and developed system can meet the needs of fast on-line measurement of thin films sheet resistance with a wide range, and moreover, the accuracy of measurements and the level of automatization have been dramatically improved compared to the conventional measurement system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.