In this paper, we study how to find maximal k-edge-connected subgraphs from a large graph. k-edge-connected subgraphs can be used to capture closely related vertices, and finding such vertex clusters is interesting in many applications, e.g., social network analysis, bioinformatics, web link research. Compared with other explicit structures for modeling vertex clusters, such as quasi-clique, k-core, which only set the requirement on vertex degrees, k-edge-connected subgraph further requires high connectivity within a subgraph (a stronger requirement), and hence defines a more closely related vertex cluster.To find maximal k-edge-connected subgraphs from a graph, a basic approach is to repeatedly apply minimum cut algorithm to the connected components of the input graph until all connected components are k-connected. However, the basic approach is very expensive if the input graph is large. To tackle the problem, we propose three major techniques: vertex reduction, edge reduction and cut pruning. These speed-up techniques are applied on top of the basic approach. We conduct extensive experiments and show that the speed-up techniques are very effective.
The skyline query, as an important operator in databases for multi-preference analysis and decision making, has received much attention recently due to its wide application backgrounds. In this paper, we consider the skyline query problem in Wireless Sensor Network with an objective to maximize the network lifetime by proposing filter-based distributed algorithms for skyline evaluation and maintenance. We also conduct preliminary experiments to evaluate the performance of the proposed algorithms. The experimental results demonstrate that the proposed algorithms significantly outperform existing algorithms on various datasets.
Technological advances have enabled the deployment of largescale sensor networks for environmental monitoring and surveillance purposes. The large volume of data generated by sensors needs to be processed to respond to the users queries. However, efficient processing of queries in sensor networks poses great challenges due to the unique characteristics imposed on sensor networks including slow processing capability, limited storage, and energy-limited batteries, etc. Among various queries, top-k query is one of the fundamental operators in many applications of wireless sensor networks for phenomenon monitoring. In this paper we focus on evaluating top-k queries in an energy-efficient manner such that the network lifetime is maximized. To achieve that, we devise a scalable, filter-based localized evaluation algorithm for top-k query evaluation, which is able to filter out as many unlikely top-k results as possible within the network from transmission. We also conduct extensive experiments by simulations to evaluate the performance of the proposed algorithm on real datasets. The experimental results show that the proposed algorithm outperforms existing algorithms significantly in network lifetime prolongation.
Abstract-With the further development of sensor techniques in wireless sensor networks (WSNs), it is becoming urgent that they should be able to support complicated queries like skyline query for multi-preference and decision making. In this paper, we consider skyline query evaluation in WSNs by devising evaluation algorithms for finding skyline points on a dataset progressively. The core techniques adopted are to partition the dataset into several disjoint subsets and output the skyline points by examining each subsequent subset progressively, using some of the skyline points obtained so far to filter out those unlikely skyline points in the current processing subset from transmission. We finally conduct extensive experiments by simulations to evaluate the performance of the proposed algorithms on synthetic and real datasets. The experimental results show that the proposed algorithms outperform existing algorithms significantly in network lifetime prolongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.