Front cover image: Ruthenium‐based electrocatalysts have great potential as an alternative to platinum‐based materials for the electrolysis of water for hydrogen evolution. In this work, a unique two‐site mechanism of the ruthenium single/dual atoms and Ru nanoclusters to strengthen the stability of single atom sites and enhance its intrinsic activity was identified. Ru S/DAs and Ru NCs demonstrate high electroactivity due to the electroactive Ru 4d orbitals. The introduction of Ru NCs activates the carbon support, providing a high electronic conductivity to transfer electrons from Ru NCs to Ru S/DAs, and facilitates water dissociation for the HER process. (DOI: https://doi.org/10.1002/smm2.1067)
Development of liquid-phase separated bulk metallic glasses is retarded due to difficulties in finding of immiscible systems with high glass-forming ability (GFA) of coexistent liquids. Zr-Ce alloy is a typical liquid immiscible system characterized by a liquid miscibility gap. We added Co and Cu into the Zr-Ce immiscible system and optimized the composition of the designed Zr-Ce-Co-Cu immiscible alloys. The solidification experiments were carried out for the quaternary alloys. The result indicates that the melt separated into ZrCo-rich and CeCu-rich liquids upon cooling through the miscibility gap. By optimizing the relative atomic ratio of Co:Cu, the coexistent ZrCo-rich and CeCu-rich liquids automatically assembled eutectic compositions during the liquid-liquid phase separation (LLPS). Under the condition of fast quenching, the two liquids subsequently undergo liquid-to-glass transition, resulting in the formation of composite structure with two glasses in the samples. We successfully developed phased-separated metallic glasses based on the Zr-Ce-Co-Cu immiscible alloys. This work not only strengthens the understanding in the LLPS but also provides a new strategy on the design of the dual glassy composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.